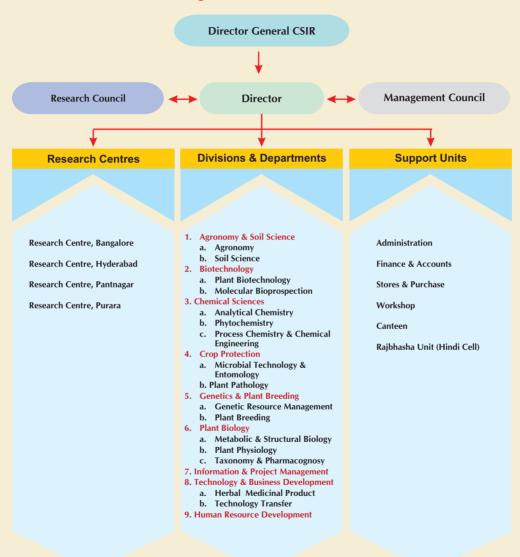
वार्षिक प्रतिवेदन Annual Report 2011-2012



CSIR-Central Institute of Medicinal and Aromatic Plants

(Council of Scientific and Industrial Research)

Lucknow | India

Organizational Structure

वार्षिक प्रतिवेदन 2011-2012

With Best Compliments From Director CSIR-CIMAP

CSIR-Central Institute of Medicinal and Aromatic Plants

(Council of Scientific and Industrial Research)

Lucknow - 226 015, India

Acknowledgments

Research Council
Management Council
Project Leaders, Scientists, Technical Staff
Research Students and Scholars
Project Funding Agencies
MAPs Cultivators, Growers and Processors

A Team CSIR-CIMAP Effort

	Page No.
From Director's Desk	1
शोध उपलब्धियाँ - संक्षेप में	2
Genetic enhancement of obligate asexual and sexual MAPs	9
New molecules of therapeutic significance	16
Metabolic pathway studies in some commercially important MAPs	22
Setting world quality standards for herbals (procedure, materials and products)	28
Enabling high value agriculture in low value under utilized lands and cropping systems	33
Basic research towards path breaking MAPs science	38
Anti-malarials from MAPs	39
Prospecting bio-resources of commercial importance	40
Bioenergy and useful intermediates from spent aromatics	46
Development of analytical processes and diagnostic tools	47
Survey, inventorisation and technology dissemination of MAPs	48
Research Center, Pantnagar	50
International and National Conferences	51
Research Publications	53
Patents	58
Research Council	61
Management Council, Budget	62
Staff List	63

Contents

निदेशक की कलम से....

मुझे संस्थान के वर्ष 2011-2012 का वार्षिक प्रतिवेदन प्रस्तुत करते हुए सुखद अनुभूति हो रही है। शोध, वैज्ञानिक सम्मेलनों, शोध प्रकाशनों और शोध प्रसार के दृष्टिकोण से यह एक उपलब्धि पूर्ण वर्ष था। यह वर्ष 11वीं पंचवर्षीय योजना का अन्तिम वर्ष होने के फलस्वरूप विभिन्न शोध परियोजनाओं से प्राप्त सफलताओं का लेखा-जोखा करना एक संतोषजनक अनुभव रहा। इसी वर्ष 12वीं पंचवर्षीय योजना के अनुसंधान योजनाओं का निर्धारण रचनात्मक परिचर्चा के उपरान्त किया गया, और तद्नुरूप 11वीं पंचवर्षीय योजना की कुछ परियोजनओं को जारी रखने का निर्णय लिया गया।

खस, सदाबहार, रोशा घास, पोस्ता व पोदीना जैसी परंपरागत सगंध एवं औषधीय फसलों पर गहनता से शोध बढ़ाने के साथ नये पौधों पर नये वैज्ञानिक अनुसंधान इस वर्ष की प्राथमिकताओं में थे। जैव सूचना विज्ञान का प्रयोग कर औषधीय रूप से महत्वपूर्ण पौधजन्य अणुओं और उनके व्युत्पन्नों की पहचान एवं

इनके औषधीय महत्व व कार्यविधि को बेहतर समझने के लिए जैव रासायनिक तथा कोशिका आधारित शोधों से न केवल विज्ञान की गुणवत्ता में सुधार किया अपितु, हमारे वैज्ञानिकों की समसामयिक शोध क्षमता को भी पुनः एक बार फिर प्रमाणित करता है।

विज्ञान की गुणवत्ता और मौलिकता का असली परीक्षण शोध पत्रों और पेटेन्ट द्वारा होता है। संस्थान के लगभग 100 उच्च इम्पैक्ट वाले शोध पत्र एवं 8 पेटेन्ट द्वारा यह स्वप्रमाणित होता है। इन उपलब्धियों को प्राप्त करने में सहयोग देने वाले वैज्ञानिकों को मेरा साधुवाद। शोध के अतिरिक्त संस्थान ने इस वर्ष दो महत्वपूर्ण वैज्ञानिक सम्मलेनों "खस और पर्यावरणीय परिवर्तन" विषय पर पांचवाँ अन्तर्राष्ट्रीय खस सम्मेलन (अक्टूबर-2011) और भारतीय जैव रसायन समिति का 80वाँ वार्षिक सम्मेलन (नवम्बर -2011) का सफल आयोजन किया। इन आयोजनों की सफलता, संस्थान के प्रति सभी सक्रिय संस्थान कर्मियों की कटिबद्धता का द्योतक है।

समाजिक दायित्वों के मोर्चे पर संस्थान का विपुल योगदान रहा है। संस्थान द्वारा नियमित रूप से आयोजित किये जाने वाले किसान मेले में बड़ी संख्या में किसानों, उद्यमियों, और महिलाओं ने भाग लिया। इसके अतिरिक्त संस्थान द्वारा समय-समय पर आयोजित किये जाने वाले विभिन्न प्रशिक्षण कार्यक्रमों से लाभान्वित होने वाले कृषकों एवं उद्यमियों से संस्थान की सफलता पुर्नप्रमाणित होती है।

संक्षेप में संस्थान के कार्मिकों और विद्यार्थियों ने इस वर्ष में उत्कृष्ट प्रगति का प्रदर्शन किया है, मैं आशा करता हूँ कि वे इस उत्साह को आने वाले वर्षों में भी बनाये रखेंगे। मैं, आप सभी से 12वीं पंचवर्षीय योजना के प्रथम वर्ष से ही निहित उद्देश्यों की प्राप्ति हेतु उत्कृष्ट प्रयासों की आशा करने के साथ शुभेच्छा की कामना करता हूँ।

From the Director's Desk......

It's my pleasant duty to present the research highlights of our institute for the year 2011-2012. It has been a very endearing year in terms of research, conferences, publications and extension activities. Since this year marked the closure of the XI FYP projects, it was gratifying to take stock of the success stories that came out of the hard work and relentless efforts of our scientists during the five years of the 11th plan. This also set the stage for constructive deliberation on the projects that need to be undertaken in-house for the 12th plan. Accordingly, we have planned for the continuation of some and closure of a few.

While research on some of CSIR-CIMAP's familiar plants like vetiver, periwinkle, palmarosa, papaver and mentha were intensified, newer plants and newer scientific approaches have been brought to the forefront this year. Use of bioinformatics to identify a successful phytomolecule/its analog in combating certain health issues, or a biochemical and cell based approach to explore the mode of action of these molecules in better understanding their medicinal importance, not only showed improvement in the quality of science performed, but also has confirmed the latent talent and contemporary research skills of our scientific pool one more time! The global litmus test to the quality of science and the innovation involved in research lies in the publication and patent list. We have had close to 100 research publications, many of them in high impact factor journals and 8 patents granted this year. Congratulations to the authors! Besides research, our team was also successful in hoisting two important conferences, viz., the International Symposium on Vetiver in October 2011, and the Society of Biological Chemists (India) Annual conference in November 2011. These successes were only a proof of the dynamic workforce that the institute is blessed with.

On the societal side, our impact has been enormous. The regular Kisan Mela brought in huge numbers of farmers and entrepreneurs who are our direct or indirect beneficiaries. Besides, we have also conducted many successful training programs and workshops for the benefit of farmers, yet another time that our success lies in the household of our farmers.

In short, Team CIMAP, both staff and students have shown excellent progress during this year and I wish and hope the fervor will continue in the years to come. I wish you all good luck as CIMAP steps into the XII FYP period with a hope that the team will put in their best efforts right from the first year to fulfill all the objectives enlisted in the proposals. All the very best!

FYP = Five Year Plan

Prof. Ram Rajasekharan

शोध उपलिह्थयाँ - संक्षेप में

लैंगिक और अलैंगिक प्रजनन वाले औषधीय एवं सगन्ध पौधों का अनुवांशिक अध्ययन

स्वचर्तुगुण बन्धय सीमैप खस -40 का विकास

सीएसआईआर-सीमैप के खस घास के अनुवांशिक उन्नयन कार्यक्रम के अर्न्तगत सीमैप खस-40 नाम की स्वचर्तुगुण (4 x = 40) बन्ध्य का विकास द्विगुण पौध से किया गया। इस किस्म द्वारा वर्ष भर में एक वर्गमी. क्षेत्रफल में लगभग 860 ग्राम कार्बन परिबद्ध किया जाता है।

पोस्ता में प्रजनन एवं अभिलक्षण

पोस्ता में होमियाटिक उत्परवर्ती क्लीस्टोगैमस पिस्टलाटा-३ विकसित किया गया जिसमें कि दल पुंज वाह्यदल पुंज में एवं पुंकेसर कारपेलायड्स में परिवर्तित थे और इन पर मेण्डेलियन वंशानुगमन नियंत्रण अप्रभावी था। इस उत्परवर्ती का आणविक स्तर पर अध्ययन प्रगति में है, जिससे इसके अवयवों के क्रमिक विकास एवं नवीन अधिक उत्पादन वाली प्रजाति का विकास सम्भव होगा।

पोस्ता में अनुवांशिक अध्ययन

छः संकर संतितयों के विभिन्न वंशों के अध्ययन से ज्ञात हुआ कि पोस्त में बीज उपज, सम्पुट सूचांक और मार्फीन प्रतिशतता के वंशानुगित में प्रभाविता एवं प्रबलता घटक का महत्व योज्य घटक से ज्यादा था।

पामारोजा में बीज निर्धारण

गुणवर्धित बीज एवं बीज दर निर्धारण हेतु अंकुरण प्रतिशत, तापक्रम एवं ओज क्षमता जैसे महत्वपूर्ण मापकों के अध्ययन द्वारा पता चला कि 25°C पर किस्म पीआरसी-1 में अधिक अंकुरण क्षमता तृष्णा एवं तृप्ता में पौध ओज सूचांक 1 और 2 अधिक थे।

मेन्था में अनुवांशिक सुधार

अनुवांशिक सुधार कार्यक्रम के अर्न्तगत अधिक पैदावार देने वाली विभिन्न कीमोवर के विकास हेतु मेन्था पिपरेटा से कुल 50 विशिष्ट अर्धसंतितओं का बीज द्वारा विकास किया गया।

सदाबहार में अनुवांशिक अध्ययन

सदाबहार में बन्द दलपुँज वाले तथा बौने एवं सामान्य दलपुँज वाले उत्परवर्ती के संकर के \mathbf{F}_2 संतितओं में से बौनी एवं बन्द दलपुंज वाली रिकाम्बीनेन्ट पौध का बौनी स्वपरागित पौधे के संकर के \mathbf{F}_2 में क्लीस्टोगैमस रिकाम्बीनेन्ट (कम बीज वाले) और स्वपरागित लम्बे पौध के संकर के \mathbf{F}_2 संतित से अच्छी बीज पैदा करने वाले क्लीस्टोगैमस रिकाम्बीनेन्ट का वरण किया गया।

उत्तर भारतीय दशाओं के लिए पाइरेथ्रम

प्राकृतिक कीटनाशक पाइरेथ्रिन के स्त्रोत पाइरेथ्रम के फूलों के विशिष्ट भौगोलिक उत्पादन स्थल इसकी उत्पादकता को पिरसीमित करने वाले कारक है। देश के आयात को कम और माँग को पूरा करने हेतु संस्थान द्वारा पाइरेथ्रम की एक संकुल किस्म का विकास किया गया।

करकुमा अमाडा का संरक्षण एवं संग्रहण

अव्यवस्थित खेती, अविवेकपूर्ण कटाई/खुदाई और फफूँद संक्रमण के लिए अतिसंवेदनशील होने के कारण *Curcuma amada* के अनुवांशिक संसाधन का संरक्षण अनिवार्य हो गया है। जिसके लिए कृत्रिम बीज प्रविधि का उपयोग करते हुए संक्रमण मुक्त नयाचार विकसित की गई है।

चिकित्सकीय रूप से महत्वपूर्ण नवीन अणुओं का अध्ययन कर्क रोग रोधी नये अणु

गैलिक एसिड से इनडानोन व्युत्पन्न बेनजीलीडाईन इनड्रानोन संश्लेषित किया गया, जो गैलिक एसिड की तुलना में बेहतर एण्टी कैंसर गुणों वाला पदार्थ है।

हैलिकोबैक्टर पाइलोरी रोधी आर्टीमिसनिन आर्टीमिसनिक एसिड का विलगन एवं आर्टीमिसनिन व्युत्पन्नों का संश्लेषण

पन्द्रह आर्टिमिसनिन व्युत्पन्न संश्लेषित किये गये जिसमें से आठ नये थे। जैव सिक्रयता के लिए परीक्षित किये गये पाँच में से एक व्युत्पन्न "आर्टीसाइक्लोप्रोपाइलिमथर" अत्याधिक जैव-सिक्रय पाया गया।

एलेस्टोनिया में गुणात्मक मापन हेतु एचपीटीएलसी

एलेस्टोनिया स्कालेरेन्सिस (सप्तपर्णी) गुणवत्ता नियन्त्रण हेतु कोई भी प्रमाणिक क्रोमेटोग्राफिक विधि उपलब्ध नहीं है। इसके उपयोगी अवयवों, उर्सोलिक अम्ल, बेटूलिनिक अम्ल, वीटा-साइटोस्टिराल और ल्यूपियाल के मात्रात्मक एवं गुणात्मक मापन हेतु एक प्रभावी HPTLC विधि विकसित की गयी।

अमानिया मल्टीफ्लोरा से नये जैव सक्रिय अणु

अमानिया मल्टीफ्लोरा के रासायनिक विश्लेषण से एक नवीन और नौ पूर्व ज्ञात औषधीय गुणयुक्त यौगिकों की पहचान हुई। इसका मेथेनाल सत् और यौगिक 1, नैलिडिक्सिक अम्ल की न्यूनतम जीवरोधक क्षमता (MIC) में चार गुना तथा अन्य यौगिक और उसके व्युत्पन्न (IA-IE) दो गुना की कमी लाते है। नवीन यौगिक (5) औसत दर्जे की इनविद्रो क्षय रोग रोधक क्षमता (MIC= $25\,\mathrm{Mg/ml}$) प्रदर्शित करता है।

मनोरोग रोधी क्रियाशीलता निर्धारण हेतु विधि

यौगिक α योहम्विन महत्वपूर्ण मनोरोग रोधक क्रिया प्रदर्शित करता है। इसके आभासी

व्युत्पन्नों की संभावित मनोरोग रोधक क्षमता को मापने का एक विधिमान्य सांख्यिकीय-संरचना-क्रियाशीलता- सम्बन्ध (QSAR) माडल विकसित किया गया। राउल्फिया टेटाफाइला की पत्तियों से मनोरोगरोधक क्षाराभों का एचपीएलसी

राउल्फिया टेट्राफाइला की पत्तियों से मनोरोगरोधक क्षाराभों का एचपीएलसी द्वारा गुणात्मक मापन

राउल्फिया टेट्राफाइला की पित्तयों के सत् और सत् के विभिन्न भागों में महत्वपूर्ण मनोरोग रोधक अवयवों α योहम्विन, आइसोरेसरिपिलिन और 10-मेथक्सीटेट्राहाइड्रो एलोस्टोनिन के गुणात्मक एवं मात्रात्मक मापन हेतु एक विधिमान्य HPLC विधि विकसित की गयी।

व्यावसायिक रूप से महत्वपूर्ण औषधीय एवं सगन्ध पौधे में चयापचय पथिकाओं का अध्ययन

विथानोलायड पाथवे में वर्की अनुक्रमणकारक का प्रभाव

अश्वगंधा में वर्की (WRKY) 131, 336, 288 और 5 के mRN A अभिव्यक्ति द्वारा पता चला है, कि वे मिथाईल जैसेमोनेट, (जो कि विथानोलायड पाथवे का उत्प्रेरक है) को सकारात्मक रूप से प्रभावित करते हैं। अश्वगंधा के पौधों से विलगीत PDS जीन को वेक्टर pTRV2 और pYL156 में प्रारुपित कर एग्रोबैक्टीरियम के माध्यम द्वारा पुनः अश्वगंधा पौधे को संक्रमित कराने पर, संक्रमण के 15 से 20 दिन बाद PDS द्वारा जीन मौनीकरण अभिव्यक्त हुआ।

सदाबहार में जीन अनुक्रमण नियामक का विवरण

सदाबहार पौधे में द्वितीयक चयोपचयी पथिका जीनों का कुशलतापूर्वक नियमन करने हेतु एक LIM अक्रमणकारक का विलगन एवं प्रतिरूण किया गया। सदाबहार पौधे में द्वितीयक चयोपचयी पथिकाओं के नियमन में इसकी भूमिका को समझने के लिए पादप द्वितीयक वाहकों में अधिअभिव्यक्ति एवं अस्थायी मौनीकरण द्वारा सदाबहार में

टरिपनॉयड इन्डोल अल्कलायड (TIA) पथिका के मुख्य जीनों का अधिनियमन इंगित हुआ।

गुलेबबूना के विसाबोलीन जीन का प्रारूपण और अभिलक्षण

गुले बबूना के पुष्प से निष्कर्षित cDNA का विनष्ट प्राइमर क्रम का उपयोग कर जीन के दो भागों का परिवर्धिन, जेल शुद्धिकरण, pGEM वेक्टर मे प्ररूपन और BLASTx विवेचन द्वारा उनकी PVC57 में सैटलम स्पीशीज के मोनोटरपीन सिन्थेज किण्व से क्रमशः 94 एवं 70 प्रतिशत समानता प्रदर्शित हुई।

इन टुकड़ों के 3' और 5' रेस से परिवर्धन pVC57 प्रारूपण और BLASTx विवेचन द्वारा उनकी सैंटलम एस्ट्रोकेलेडोनियम के बिसाबोलीन सिन्थेज किण्व के साथ 93 प्रतिशत समानता प्रदर्शित हुई।

टैजिटस इरेक्टा में पुनर्जीवन अध्ययन

टैजिटस इरेक्टा के विभिन्न अंगों जैसे कि बीजपत्र, बीजपत्राधार और प्राक्ष (Rachis) इत्यादि के ऊतको को विभिन्न पादप ऊतक संवर्धन माध्यमों में सर्वार्धित कर उनसे प्ररोह पृथकत्व का नयाचार विकसित किया गया।

जैविक और अजैविक उद्दीपन द्वारा मंड्रकपर्णी में सेन्टेलोसाईड में वृद्धि

मंडूकपर्णी के ऊतक संवर्धन माध्यम में, ऊतक के बहुशाखीय वाली अवस्था में, Cu++ और ट्राइकोडर्मा मिलाने पर ऊतक वृद्धि सूचांक (767) और सन्टेलोसाईड उत्पाद (0.381) पाया गया।

बेन्जाइल आइसोक्विलीन अल्कलायड पाथवे एन्जाइमों के लिए इन-सिलिको सिंटेनी मैप का विकास

आणिवक स्तर पर जैव संबंधित पदों के अन्वेषण के प्रयास द्वारा कुल 15,279 विशिष्ट ट्राँसिक्रिप्ट, जिसमें 1408 कन्टीग और 13,871 सिंग्ल्टन शामिल हैं, पहचाने गये। इन ट्राँसिक्रिप्ट के विश्लेषण के पश्चातृ मुख्य रुप से काल्पनिक जीन एवं इसके

अतिरिक्त पाथवे से संबंधित महत्वपूर्ण जीन प्रकाश में आये। ईएसटी डाटासेट का यह कार्यात्मक एनोटेशन वर्गीकरण, आणविक प्रजनन, आनुवंशिकी, जीनेमिक्स और द्वितीयक चयापचय के अध्ययन के लिए एक उपयोगी संसाधन सिद्ध होगा।

तुलसी तथा मेंथा के द्वितीयक उपायचयज प्रोटीनों की संरचना एवं कर्यात्मक अभिलक्षण का निर्धारण

तुलसी तथा मेंथा के द्वितीयक उपायचयक प्रोटीनों का *इन-सिलिको* की विधि से संरचना निर्धारण तथा कार्यात्मक अभिलक्षण किया गया। इनमें प्रमुख प्रोटीन युजीनॉल-ओ-मिथाइल ट्रॉसफरेज तथा चैवीकाल-ओ-मिथाइल ट्रॉसफरेज हैं। इन प्रोटीन प्रतिरुपों का उपयोग इनके विभिन्न कार्यों के विश्लेषण के लिये किया जा सकता है।

हर्बल उत्पादों हेतु विश्वस्तरीय गुणवत्ता मानकों का निर्धारण शालपर्णी में गुणवत्ता मापन हेतु एचपीएलसी-पीडीए विधि का विकास

शालपर्णी आयुर्वेदिक औषधि दशमूल का एक महत्वपूर्ण घटक है। पौधे की गुणवत्ता निर्धारण हेतु पौधे से निकाले गये तीन महत्वपूर्ण फ्लेवोनोयड पर आधारित एक एच. पी.एल.सी. विधि का प्रतिपादन किया गया।

सम्भालू में मुख्य इरिडोवायड्स और एण्टी आक्सीडेंट के मापन हेतु एच.पी. एल.सी. विधि

सम्भालू एक महत्वपूर्ण भारतीय औषधीय पौधा है। पौधे से महत्वपूर्ण एंटीआक्सीडेंट इरिड्वायड्स निकाले गये एवं इनके आधार पर पौधे की गुणत्ता निर्धारण हेतु एच. पी.एल.सी. विधि का प्रतिपादन किया गया।

सम्भालू में फ्लैवानाइड्स एवं बैंज्वाइक एसिड व्युत्पन्नों के मापन हेतु एचपीएलसी विधि

पौधे की गुणवत्ता निर्धारण हेतु फ्लैवोनाइड्स एवं बैन्ज्वाइक एसिड डेरिवेटिव्स को

केमिकल मार्कर लेते हुए एक अन्य एचपीटीएलसी विधि द्वारा प्रतिपादन किया गया। अग्निमंथ का रासायनिक परीक्षण

अग्निमंथ आयुर्वेदिक औषि दशमूल का एक महत्वपूर्ण घटक है। पौधे के तने की छाल से ग्यारह महत्वपूर्ण एंटीआक्सीडेंट रसायन विलिग्त किये गये जिसमें से दो रसायन प्रकृति मे पहली बार पाये गये।

करकुमा अमाडा में क्षयरोग रोधक तत्व विश्लेषण हेतु आरपीएलसी-पीडीए-एमएस विधि

Mango ginger एशिया में पारम्परिक तथा लोक चिकित्सा प्रणाली में प्रयोग होता है। क्षयनाशक लैबडेन डाइटरपीन एल्डीहाइड (labda-8 (17), 12-diene-15-16-dial) के पृथक्करण एवं सरंचना व्याख्या के बाद *C. amada* में Quantify करने के लिए एक नयी मान्य HPLC-PDA पद्धति स्थापित की गयी।

तुलसी में सुरक्षा प्रोफाइल निर्धारण हेतु एचपीएलसी फ्रिंगर प्रिन्ट का विकास

तुलसी के औषधीय गुण की सुरक्षा को परिभाषित करने के लिए Chromatographic fingerprint पद्धित को विकसित किया गया, जिसमें तीन मानकीकरण अर्क की fingerprint विधि और *In-vivo* औषधीय सुरक्षा रेखाचित्र के साथ उनकी चोटियों (Peaks) में पारस्परिक संबंध का विवरण दिया है।

अप्रयोज्य कम उर्वर मृदाओं में उच्च उपयोगी कृषि पद्धतियां केवांच बीज उत्पादन क्षमता पर विभिन्न छाया स्तरों का प्रभाव

विभिन्न छाया स्तरों पर केवॉच के बीज उत्पादन क्षमता के अध्ययन से पता चला कि 50% छाया की दशा में केवॉच $(10.69/\mbox{e})$ बीज उत्पदान क्षमता बिना छाया और 75% छाया की दशा की तुलना में ज्यादा है।

गेहूँ और खस की सहफसली खेती की सम्भावना

गेहूँ और खस की सहखेती में गेहूँ की पौध संख्या 25 और 50 प्रतिशत से घटाने पर ऊपज में क्रमशः 11 और 21 प्रतिशत की कमी आई परन्तु खस के उत्पादन पर बगैर किसी प्रभाव के प्रति हे. 22-27 किग्रा. तेल प्राप्त हुआ जो कि गेहूँ उत्पादन की कमी की भी पूर्ति करता है।

ऑवला के बागानों में खस की सहखेती

खस को आँवले के बागों में 30×30 सेमी पंक्ति से पंक्ति और पौध से पौध की दूरी रख और 80:40:40 किया. \nearrow हे. की दर से ऊर्वरक के प्रयोग करने पर 15.5 किया. \nearrow हे. तेल उपज प्राप्त की गई जो कि अप्रयुक्त क्षेत्र का बेहतर उपयोग है।

अश्वगन्धा में गीले सड़न रोग का एकीकृत प्रबन्धन

अश्वगंधा के गीले सड़न रोग के कारक को संवर्द्धन, आकार-प्रकार और आणविक विशेषताओं के आधार पर फोएनोफोरम कुकुरविटेरम के रूप में पहचाना गया तथा NCBI जीन बैंक के अनुक्रम न. JN639861 पर जमा है।

स्टीविया में छोटी पत्ती रोग का एकीकृत प्रबन्धन

स्टीविया में छोटी पत्तियों के रोग के कारक को संचरण इलेक्ट्रान सूक्ष्मदर्शी से अध्ययन कर फाइटोप्लाजमा प्रमाणित किया गया जो कि ज्वार के बंची शूट (16SrXXIV) फाइटोप्लाजमा (AF509322) से 98.2% समानता दर्शाता है।

औषधीय एवं सगन्ध पौधों की सूक्ष्मजीवियों के मध्यवर्तन से उपज एवं प्रतिबल उत्प्रेरित क्षति में सुधार

IAA उत्पादक पैन्टोइमा स्पीशीज और ग्लोमस एग्रीगेटम जैसे सूक्ष्मजीवी से जिरेनियम की कटिंग को पौधशाला में उपचारित करने पर तेल ऊपज में बढोत्तरी होती है।

लवणरोधक पौध वृद्धि उत्प्रेरक हैलोमोनास डेसिडेरर्टा (STR8) और इक्सीग्ओ वैक्टीरियम आक्सीडोटोलेरैन्स (STR36) जापानी पोदीने को 300 mm नमक के प्रतिबल के प्रति सहनशीलता प्रदान करता है। एक्रोमोबैक्टर जाइलोसावसी डैन्स (Fd2) और ओक्रोमोबैक्टरम राइजोस्फेरी (Oci13) से जलभराव वाली दशाओं में तुलसी की वृद्धि में सुधार पाया गया। माइक्रोवैक्टीरियम स्पीशीज (Sucr 140) क्रोमियम की मात्रा में 24 घण्टे में कमी लाता है।

अश्वगन्धा की जड़ों से जलाल्कोहिलक सत्व की एण्टीएजिंग और प्रतिबल रोधी क्षमता का सी. एलीगैन्स द्वारा प्रदर्शन

अश्वगंधा की जड़ों के जलाल्कोहलिक सत्व से सी. इलीगैन्स के जीवन काल में लगभग 14 प्रतिशत की वृद्धि के साथ फ्री रेडिकल्स के स्तर में कमी आई। विभिन्न उत्परवर्तियों और जलाल्कोहलिक सत्व की प्रभावी सान्द्रता के प्रयोगों द्वारा जीवन काल वृद्धि प्रक्रिया अध्ययन से पता चला कि अश्वगंधा सत्व उत्परिवर्ती clk 1 द्वारा जीवनकाल को विभिन्न रूप से प्रभावित करता है।

खस जड़ खनन यंत्र का प्रक्षेत्र परीक्षण और प्रदर्शन

टैक्टर (25 BHP) चालित विकसित यंत्र से एक हे. क्षेत्र की खुदाई लगभग 20 घण्टे में 10,000 रूपयें की लागत से हो जाती है जो कि पारम्परिक मानव श्रम की तुलना में चार गुना अधिक लाभकारी है।

औषधीय एवं सगन्ध पौध विज्ञान में मौलिक अनुसंधान महत्वपूर्ण औषधीय पौधों का रासायनिक परीक्षण

अशोक वृक्ष की छाल से कई महत्वपूर्ण अवयवों को निष्कर्षित किया गया है जिनमें से कुछ यौगिकों ने जैवीय गुण प्रदर्शित किया है। जैथोजाइलम की दो स्पेसीज के निष्कर्षण से नई तरह की एल्केलवायडस प्राप्त हुई है। इनमें से कुछ कैंसर रोधक

क्षमता से परिपूर्ण है। अश्वगंधा की स्टीर्वायड्स से रसायनिक प्रक्रिया द्वारा अनेक यौगिक बनाए गए है। इनकी गुणवत्ता का परीक्षण कैंसर रोधी के रुप में किया जा रहा है।

औषधीय एवं सगन्ध पौधों द्वारा मलेरिया रोधण औषधीय एवं सगन्ध पौधों से मलेरिया नियंत्रण

परजीवी अवरोधन, वाहक नियंत्रण, आर्टीमीशिया पौधों में आर्टीमीसिनिन घटक की मात्रा में वृद्धि (आनुवांशिक उन्नयन) तथा लक्ष्य (DMI target) की पहचान के लिए इन-सिलिको इत्यादि समग्र विधियों के प्रयोग से प्रभावी मलेरिया नियंत्रण हेतु अनुसंधान किये गये।

व्यावसायिक रूप से महत्वपूर्ण जैव संसाधनों का अनुशीलन एमानिया बैक्सीफेरा में क्षय रोग रोध क्रियाशीलता की खोज

एमानिया बैक्सीफेरा से निष्कर्षित, यौगिक ४ हाइड्राक्सी-ए-टेट्रालोन और उससे संश्लेषित दो व्युत्पन्नों में क्षयरोग रोधी क्रियाशीलता पाई गयी।

पौध जन्य अणुओं द्वारा विषाणु वर्हिवाहक पम्प का प्रभाव अपरिवर्तन

तीन नवीन विकसित पौध जन्य अणुओं CIMAP-LYS, CIMAP-GA और CIMAP-NDA द्वारा वर्हिवाहक पम्प नियंत्रक जीन के नियमन के अपरिवर्तन द्वारा विषाणुरोधी एण्टीबायोटिक की सान्द्रता को १६ गुना तक कम कर दिया।

प्रमाणीकृत हर्बल आफ्टर शेव जेल का विकास

पौधजन्य प्राकृतिक घटकों का उपयोग कर एक After Shave Gel तैयार किया गया है। यह जेल "सिम-1116" हानिकारक जीवाणुओं का नाश करता है एवं "एलोवेरा" और "ग्लिसरीन" त्वचा की नमी को संतुलित कर तरो-ताजा बनाये रखने में मदद करता है।

उसनिक एसिड की विषाणुरोधी क्रिया का स्टैफाइलो कोकस आरस की झिल्ली विदीर्णन द्वारा प्रदर्शन

उसनिक एसिङ की $25\text{-}50\mu\mathrm{g/ml}$ की सान्द्रता द्वारा मेथीसीलिन रोधी स्टेंफैलोकोकस आरस की वृद्धि को अवरोधित किया।

करकुमिन और उसके व्युत्पनों की मलेरियारोधी क्षमता

करकुमिन, डिमेथाक्सीकरकुमिन और बिसडिमेथाक्सी करकुमिन को 100 mg/kg शारीरिक भार की दर से तथा क्लोरोफिन के 10mg/kg शारीरिक भार की दर से प्लाजमोडियम बरजनी (K-173) द्वारा संक्रमित स्विस एल्बिनो चूहो पर तुलनात्मक अध्ययन किया गया ।

पुल्चिया लैंसोलाटा से विग्लित पी-53 और पी-74 का सी 6 ग्लिओमा कोशाओं मे शोथरोधिता का अध्ययन

पुल्चिया लैंसोलाटा से निष्कर्षित P-53 और P-74 की 1,10 और $100\,\mu g/ml$ द्वारा पूर्व उपचारित चूहों की सी–6 ग्लीओमा कोशिकाओं को $0.1\,\mu g/ml$ LPS द्वारा शोथ उद्दीपित करने पर पूर्व उपचारित कोशिकाओं में शोथ मध्यस्थों की मात्रा में दर अनुरूप कमी पायी गयी।

IND-M की विषाक्तता का स्विस एल्बिनो चूहों मे अध्ययन

IND-M को औषधीय उत्पाद रूप में चिन्हित करने से पूर्व इसकी कर्करोगरोधक क्रियाशीलता का इन विट्रो माध्यम में विषाक्तता का आकलन किया गया।

सहजन में उपस्थित जैव सक्रियता का प्रायोगिक निरूपण

आक्सी उद्दीपित शिथिलता के लक्षण को सहजन की पित्तयों के विभिन्न प्रभावी सान्द्रता के जलीय सत्व द्वारा GSH में वृद्धि और MDA स्तर में कमी द्वारा प्रभावित पाया गया, जबिक बीजों के इथेनालिक सत्व में अत्यधिक फेनाल, अवकरण शिक्त

एवं फ्री रेडिकल्स को निस्तारित करने की क्षमता पायी गई।

औषधीय एवं सगंध पौधौं के आसवित अवशिष्ट से जैव ईधन, जैव बहुलक, जैव कीटनाशक एवं अन्य उपयोगी रसायन

भारत मे प्रतिवर्ष औषधीय एवं सगंध पौध कृषकों द्वारा लगभग 6 लाख टन आसवन अपिशष्ट पैदा किया जाता है। जिसका ज्यादातर भाग बेकार हो जाता है। सीएसआईआर-सीमैप ने अपने शोध कार्यों से इस अपिशष्ट का प्रयोग कर मूल्यवान जैव रसायन उत्पाद तैयार किये हैं।

विश्लेषण पद्धतियों का विकास

प्लाजमा मे एण्टी बायोटिक के मापन हेतु त्वरित एवं अघातक विधि का विकास

FTNIR के माध्यम से प्लाजमा में उपस्थित / उपलब्ध एण्टी बायोटिक की मात्रा निर्धारण हेतु त्वरित एवं गैर विनाशकारी विधि विकसित की गई जिसका उपयोग पौध जन्य जैव सिक्रिय पदार्थों के फार्माकोकिइनोटिक्स के अध्ययन में भी किया जा सकता हैं।

कपूर तेल में कैम्फर इन्नाशियोमर की काइरेल्टी का अध्ययन

कपूर के सगंध तेल में उपस्थित कैम्फर इन्निशयोमर्स की काईरेल्टी का अध्ययन वर्ष के बारह महीनों में करने पर ज्ञात हुआ कि (IR) - (+) - एवं (IS) - (-) - इन्निशियोमेरिक अनुपात 99:1 था, जो कि संश्लेषित कैम्फर से भिन्न है।

औषधीय एवं सगंध पौधों का सर्वेक्षण, सूचीकरण एवं तकनीकी प्रसार

मेन्थॉल मिन्ट खेती में आर्थिक विश्लेषण पर लागत और लाभ की तुलना की दृष्टि से एक अध्ययन किया गया। मेंथाल मिन्ट की एक हेक्टेयर खेती में औसत लागत रू. 15,966/- प्रति हेक्टेयर आती है, तथा कुल शुद्ध आय रू. 40,649/- प्रति हेक्टेयर प्राप्त होती है। उत्पादन पर मानव श्रम, मशीनरी, खाद एवं उर्वरक, सिचाई और निराई-गुड़ाई कार्यों इत्यादि कारकों का सीधा प्रभाव रहा है।

सी.एस.आई.आर-सीमैप किसान मेला 31 जनवरी 2012 को लखनऊ में आयोजित किया गया जिसमें देश के विभिन्न भागों से 1500 से अधिक किसानों, महिलाओं तथा उद्यमियों ने भाग लिया। इस अवसर पर दो कम्पनियों (मेसर्स इमामी बायोटेक लिमिटेड कोलकाता एवं मेसर्स इप्का लैब रतलाम) से परामर्श करार किया गया।

सगंध तेलों की प्रोसेसिंग विषय पर उद्यमिता प्रशिक्षण, एलोवेरा प्रोसेसिंग पर चार दिवसीय उद्यमिता प्रसंस्करण प्रशिक्षण, उत्तराखण्ड के लिए उपयुक्त औषधीय एवं सगंध पौधों को उगाने एवं प्रसंस्करण पर प्रशिक्षण कार्यक्रमों का आयोजन किया गया जिसमें कुल लगभग 140 प्रतिभागियों ने हिस्सा लिया। दो महिला उद्यमिता प्रशिक्षण कार्यक्रम लखनऊ में आयोजित किये गये जिसमें लगभग 34 महिला प्रतिभागियों ने प्रशिक्षण प्राप्त किया। देश के विभिन्न राज्यों में 16 प्रशिक्षण कार्यक्रम आयोजित किये गयें जिसमें देश के विभिन्न राज्यों से लगभग 790 प्रतिभागी किसानो व उद्यमियों ने प्रशिक्षण प्राप्त किया। राठ हमीरपुर, उत्तर प्रदेश में आर्गेनिक तुलसी उगाने वाले लगभग 300 किसानों का डाटा एकत्रित कर एक आर्थिक अध्ययन किया गया तथा बुन्देलखण्ड के लगभग 2 दर्जन किसानों के खेतों का मृदा परीक्षण कर माइक्रोबियल बायोजैविक तथा नत्रजन, फास्फोरस, पोटाश एवं सूक्ष्म तत्वों के बारे में अध्ययन किया गया तथा औषधीय एवं सगंध पौधों की खेती करने की संस्तुति प्रदान की गयी।

सीमैप शोध केन्द्र पन्तनगर जटामांसी के संगध तेल में रसायनिक भिन्नता

उत्तराखंड में प्राकृतिक रूप से उगने वाली 17 विभिन्न जटामांसी के सगंध तेल नमूनों का अध्ययन तेल प्रतिशतता एवं गुणवत्ता की भिन्नता और समानता के आधार पर कर उन्हें कुल 6 समूहों में व्यवस्थित किया गया। पचौली अल्कोहल (13.4-66.7%) α -बलनीशीन (<0.05-23.5%), α -गुआइन (0.2-13.5%), गुआइल (<0.05-12.2%) तेल के प्रमुख घटक थे।

जटामांसी की जड़ और तने से प्राप्त सगंध तेल का तुलनात्मक अध्ययन

पचौली अल्कोहल, विरीडीफलोराल और आइसोवेलेरिक एसिड तने से प्राप्त तेल में प्रमुख घटक थें, जबिक अल्फा बलनीशीन, अल्फा-गुआइन, सिचैलीन, अल्फा-पचौलीन इत्यादि जड़ उत्पादित तेल के प्रमुख घटक थे।

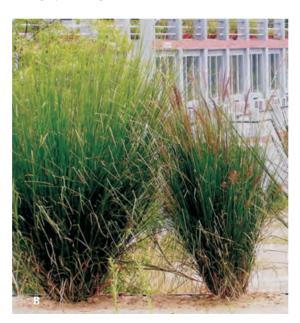
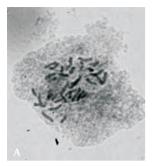
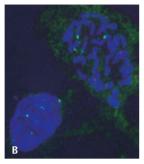
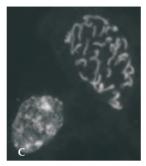
पचौली और जटामांसी के सगंध तेल का तुलनात्मक अध्ययन

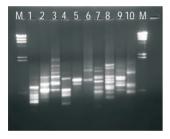
दोनों भिन्न पौधों से प्राप्त होने वाले सगंध तेल में 78.5-90.3% तक की समानता पायी गयी। पचौली तेल के आंशिक घटक पोगोस्टोन, पोगोस्टाल और (2)-धूजोपसीन मार्कर चिन्ह है जबिक जटामांसी में ३-मिथाईल वैलेरिक एसिड थाईमाल, मिथाईल ईथर, कारवोकालिमथाईल ईथर, बोनाइल एसिटेट, कसाने, मालीओल इत्यादि मार्कर चिन्ह है।

Development of a novel autotetraploid clone 'CIMAP-Khus 40' of Vetiver (*Vetiveria zizanioides*) useful for carbon sequestration and soil conservation

Input: UC Lavania

Taking further CSIR-CIMAP's 'Vetiver Grass Model' (*Current Science* 97:618-619, 2009), a seed infertile autotetraploid clone of *Veliveria zizaniodes* suitable for ecological plantations for long-term carbon sequestration in subsoil horizons has been developed from a pre-selected low fertility diploid clone. The developed clone is capable of producing one kg of dry root biomass (of which 43% is carbon content) after six months from one square meter area with single slips planted at 50 cm cm x 40 cm with an estimated carbon sequestration potential of 860 g/square m/year. The clone 'CIMAP-Khus 40' is characterized by somatic chromosome no. 4x = 40, larger stomata, fast growing deep penetrating roots, and seed infertility disabiling its spread as a weed. This clone has unique ISSR and RAPD profile that serve as DNA fingerprints (Figs 1-3).


Fig 1: Exo-morphology of the developed polyploid clone 'CIMAP-Khus 40'. A. Root pattern; B-Late flowering and fast growth in the polyploid clone (left) compared to south Indian clone (right); C-The autotetraploid clone showing plant growth and shoot-root ratio at three month growth stage.

A. Somatic chromosomes = 40 of autotetraploid clone; B. rDNA FISH: red 5S green 45 S; C. DAPI stain

DNA fingerprints of clone 'CIMAP-KHUS 40' D. ISSR Markers :

Lane M: ë DNA / Hind III digest

Lane 1: UBC807- AGAGAGAGAGAGAGAGAGT Lane 2: UBC810- GAGAGAGAGAGAGAGAT Lane 3: UBC811- GAGAGAGAGAGAGAGAC Lane 4: UBC812- GAGAGAGAGAGAGAGA

Lane 5 : UBC814- CTCTCTCTCTCTCTA Lane 6 : UBC818- CACACACACACACACACAC

Lane 9: UBC826- ACACACACACACACACC Lane10: UBC828-TGTGTGTGTGTGTGA

E. RAPD Markers : Lane M : ë DNA / Hind III digest

Lane 1: OPJ 6- TCGTTCCGCA
Lane 2: OPJ 9 - TGAGCCTCAC
Lane 3: OPJ10- AAGCCCGAGG
Lane 4: OPJ12 - GTCCGTGGT
Lane 5: OPJ13 - CCACACTACC
Lane 6: OPJ14- CACCCGGATG
Lane 7: OPJ15 - TGTAGCAGGG
Lane 8: OPJ16- CTGCTTAGGG
Lane 9: OPJ17- ACGCCAGTTC

Lane10:OPI18-TGGTCGCAGA

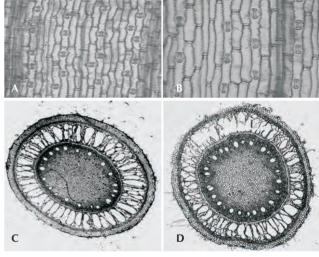
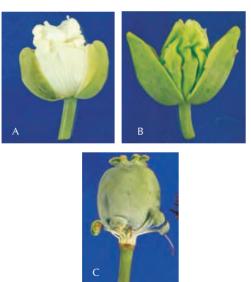


Fig 3. Leaf stomata and TS of root in the diploid (A,C) and autopolyploid (B,D).

Note enlarged size of stomata and vascular cylinder in polyploid.

Fig 2: Somatic chromosomes, rDNA localization and DNA fingerprints of of polyploid clone

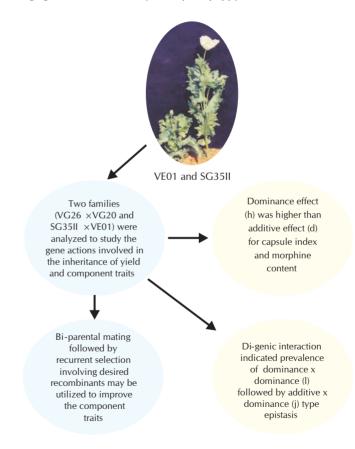

US Patent No. US 2012/0278945

10

Activity: Breeding and characterization of opium poppy

Input: OP Dhawan

B. function homeotic mutant cleistogamous pistillata-3, with all four petals modified into sepals and stamens into carpeloids has been developed. The genetic studies indicated single recessive nuclear gene control. Molecular studies are being carried out for physical and functional characterization of the mutations in pistillata (Pl) and apetalla (AP-3) genes. The traits like cleistogamy, early flowering and dwarf height of the Pl-3 mutant are important economic traits. Other agronomical traits including chemical composition of different alkaloids are not affected. The mutant would be extremely useful for developmental studies and crop improvement in *Papaver somniferum*.

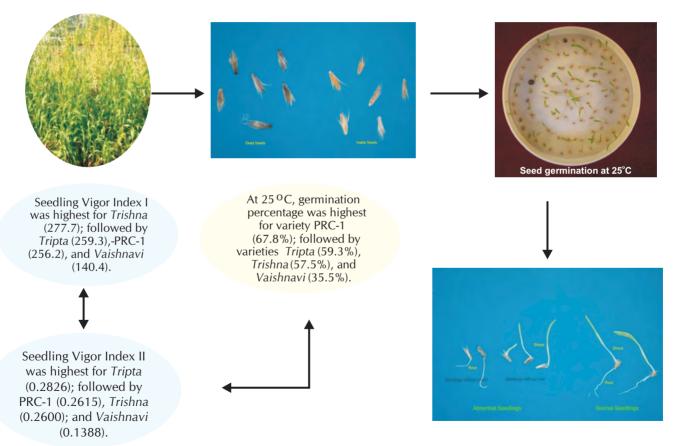


Normal flower organs are shown in **(A)**B. function homeotic mutant *Cleistogamous pistillata-3* (Pl-3), with all four petals modified into sepals **(B)** and stamens into carpeloids **(C)**.

Activity: Genetic studies in Papaver somniferum

Input : Birendra Kumar

Inheritance of yield and its attributes were worked out applying digenic model through generation mean analysis in opium poppy.



Industrial Crops & Products 36 (1): 445-448, 2012 (IF 2.507)

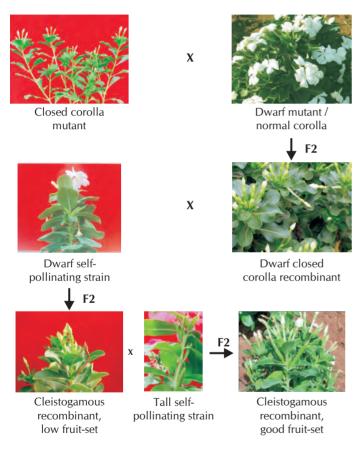
Activity: Optimization of seed rate for palmarosa

Input: Birendra Kumar

Standard seed germination influencing parameters viz., germination percentage, temperature and vigour index were worked out to optimize the seed rate for palmarora.

Journal of Crop Improvement 26 (6): 791-801, 2012

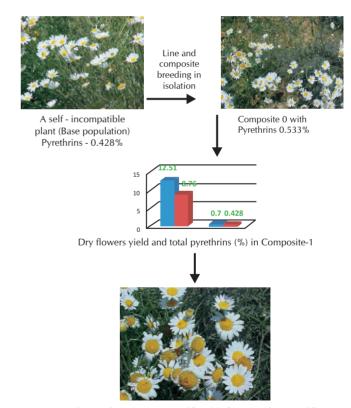
Activity: Breeding and characterization of Mentha species: Genetic improvement in Mentha piperita


Input : Birendra Kumar

Development of M. piperita chemovars through raising the half-sib seed progenies.

Activity: Genetic studies in periwinkle (Catharanthus)

Input: RN Kulkarni


Development of cleistogamy in periwinkle

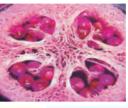
J. Heredity DOI: 10.1093/jhered/ess077, 2012

Activity: Pyrethrum (*Chrysanthemum cinerariefolium*) for north Indian plains

Input: RK Lal

Pyrethrum flowers are the natural source of the safe insecticide pyrethrins. There is continuous increase in consumptions as well as global demand, while their distribution is limited due to specific agroclimatic requirements. Therefore, a genetic improvement program was initiated for a high yielding composite strain.

Composite - 1 with pyrethrins 0.70% 12ql/ha dry flowers v/s 8.76 ql/ha in Avadh


Activity: Conservation and storage of Curcuma amada on Luffa sponge matrix

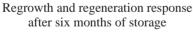
Input: Suchitra Banerjee and Laiq-ur-Rahman

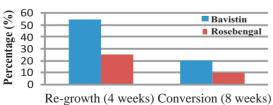
Imprudent exploitation, unsystematic cultivation practices and vulnerability towards fungal infections necessitated conservation of genetic resources of *C. amada*.

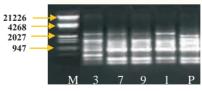
Utilized the multifarious properties of *Luffa* sponge as a novel matrix for synthetic seed mediated conservation of contamination free germplasm.

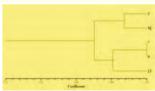
Evaluated the effects of bavistin and rosebengal, on regrowth and plant-conversion frequencies.

Curcuma amada Roxb. (Zingiberaceae) is credited with compounds having remarkable pharmacological properties.

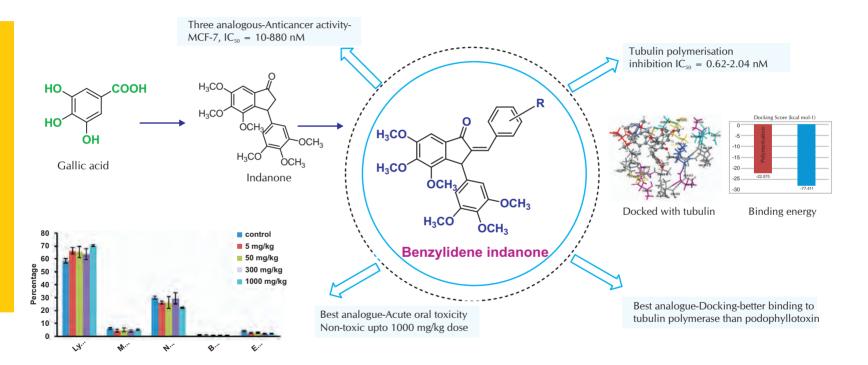








Bavistin proved three times more effective in regeneration of contamination-free plantlets.

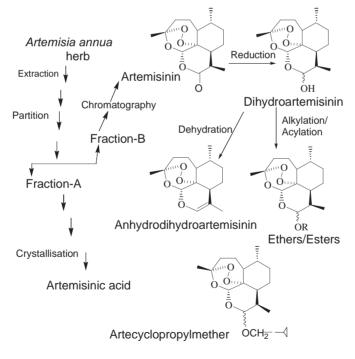

RAPD fingerprinting revealed 84.62% genetic similarity between randomly selected synthetic seed derived plantlets

Industrial Crops and Products 36: 383-388, 2012 (IF 2.507)

Activity: New molecules with anti-cancer activity

Input: AS Negi, S Luqman, D Chanda, Atul Gupta, CS Chanotiya, Karuna Shanker, Feroz Khan

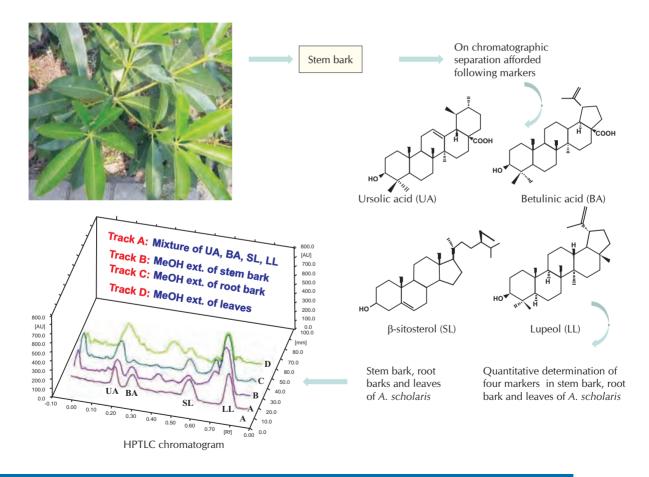
Gallic acid derived "Indanone" moiety was optimized to better anticancer agents. "Benzylidene indanones" were proved to be better anticancer agents.


Indian Patent Appl. No. 133NF2011; US Patent Provisional Application No. 2769DEL2011, dt. 22-09-2011 Bioorganic Medicinal Chemistry 20: 3049-57, 2012 (IF 2.98)

Activity: Isolation of artemisinin, artemisinic acid and synthesis of new artemisinin derivatives for their anti – *Helicobacter pylori* activity

Input: RS Bhakuni, Anirban Pal

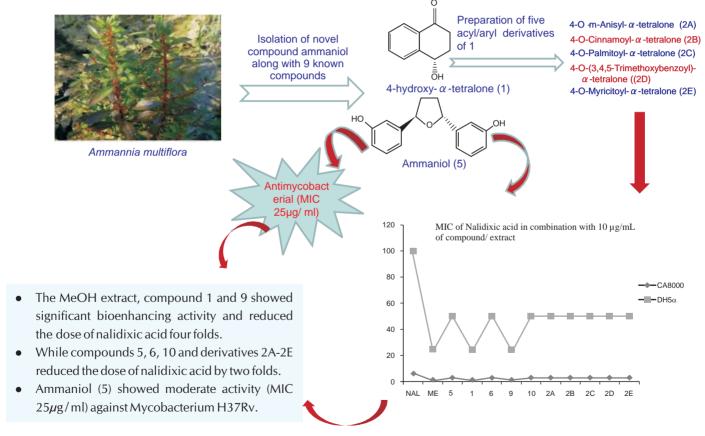
- Fifteen artemisinin derivatives (eight new) were synthesized.
- Out of five promising molecules tested, one new ether derivative, artecyclopropylmether was found to be most potent, exhibiting MIC-range, MIC50 and MBC-range values of $0.25-1.0 \,\mu\text{g/ml}$, $1.0 \,\mu\text{g/ml}$ and $1-16 \,\mu\text{g/ml}$, respectively.
- It is non-toxic, exhibits in vivo potentiality to reduce H. pylori burden in chronic infection model. Work flow chart is as under:



Parasitology Research 109 (4) 1003-1008, 2011 (IF 2.14)

Activity: HPTLC method for Alstonia scholaris

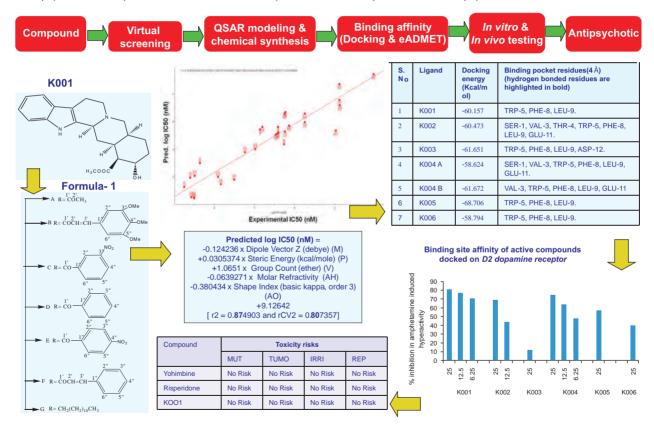
Input: SK Srivastava


An efficient HPTLC method for the simultaneous quantitation of four bio-active markers, ursolic acid(UA), betulinic acid (BA), β -sitsterol (SL) and lupeol (LL) in the various parts of A. scholaris used in Ayurvedic, Homeopathic and folklore system of Indian medicine for various ailments, has been developed.

Activity: Discovery and preclinical studies of new bioactive molecules (natural and semi-synthetic) and traditional preparations. Bioenhancing activity of *Ammannia multiflora*

Input: SK Srivastava

The chemical investigation of *Ammannia multiflora* afforded one novel and 9 known compounds. The MeOH extract and compound 1 showed four folds while the other compounds and derivatives (1A-1E) showed two fold reduction in the dose of Nalidixic acid. The compound 5 also showed moderate antimycobacterial activity (MIC 25 µg/ml) against mycobacterium H37Rv.

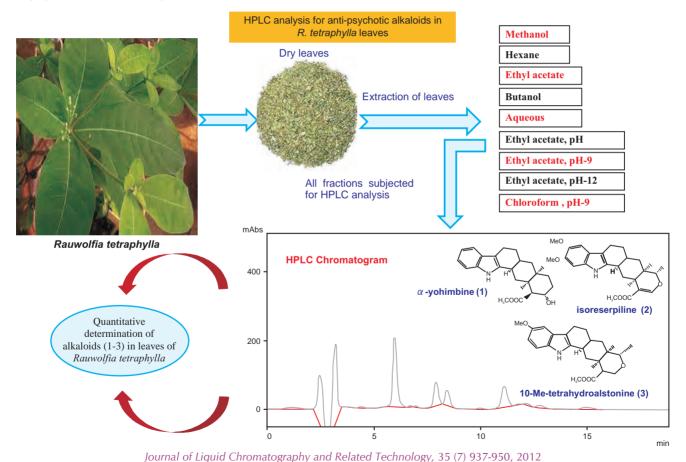


Planta Medica 78 (1) 79-81, 2012

Activity: Method for predicting and modeling antipsychotic activity using virtual screening model

Input: SK Srivastava and Feroz Khan

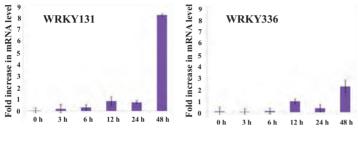
Since α -yohimbine showed significant antipsychotic activity in our hand, we developed a statistically validated QSAR regression model for the prediction of antipsychotic activity in the virtual derivatives of α -yohimbine for the optimization of antipsychotic lead.

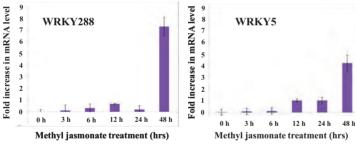


Indian Patent PCT/IN2011/000681, 2011 WIPO Pub. No. WO/2012/042541 (filed)

Activity: HPLC analysis for anti-psychotic alkaloids in Rauwolfia tetraphylla leaves

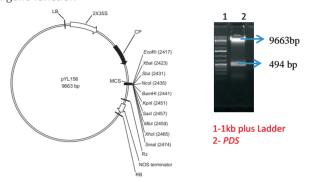
Input: SK Srivastava


Significant antipsychotic activity in the various extracts and fractions of *Rauwolfia tetraphylla* leaves has been reported by us and a simple isocratic HPTLC method for the simultaneous quantitation of three antipsychotic alkaloids, α -yohimbine(1), isoreserpiline (2) and 10-methoxytetrahydroalstonine (3) from *Rauwolfia tetraphylla* leaves were developed.



Involvement of WRKY transcription factors in withanoloid pathway

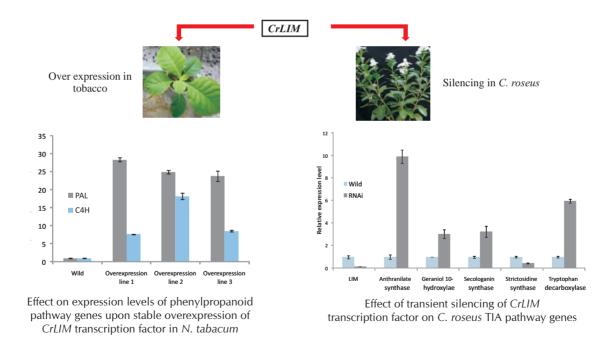
Input: Dinesh Nagegowda


Withania somnifera WRKY transcription factors gene expression in response to methyl jasmonate

The mRNA expression of *W. somnifera* WRKY131, 336, 288 and 5 was significantly induced in response to methyl jasmonate (known inducer of withanolide biosynthesis), suggesting their involvement in regulation of withanolide pathway.

Virus induced gene silencing (VIGS) in *W. somnifera* for study of gene function

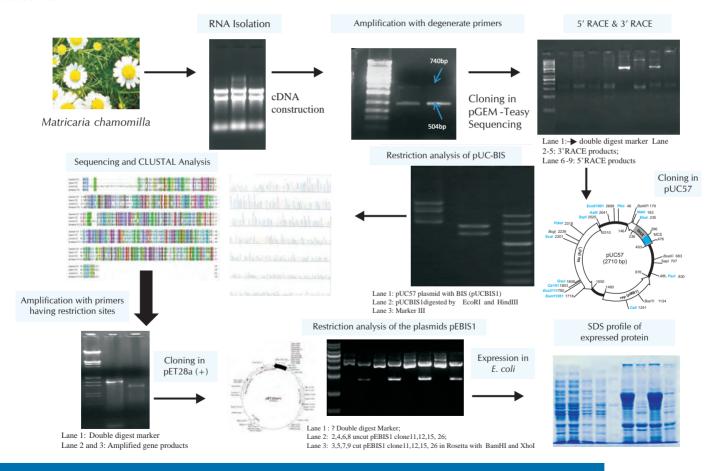
A 494 bp fragment of phytoene desaturase (PDS) gene was isolated from *W. somnifera* and cloned into VIGS vector pTRV2 vector (pYL156).



W. somnifera plants inoculated with *Agrobacterium* carrying VIGS construct for *PDS* showed silencing effect (bleached part) after 15 to 20 days of inoculation.

Activity: Characterization of transcriptional regulators from Catharanthus roseus

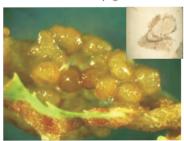
Input: Vikrant Gupta


In plants, phenylpropanoid pathway is known to be regulated by LIM transcription factors. Hence, to manipulate the regulation of secondary metabolic pathway genes in *Catharanthus roseus*, a LIM transcription factor was isolated and cloned. To decipher its role in the regulation of secondary metabolic pathways in *C. roseus*, overexpression and silencing (RNAi) constructs were made in plant binary vectors. *Agrobacterium*-mediated transient transformation using RNAi (silencing) was carried out in *C. roseus* seedlings while stable overexpression was done in *N. tabacum*. The over expression of *CrLIM* significantly up-regulated phenylalanine ammonia lyase (*PAL*) and cinnamate 4 hydroxylase (*C4H*) genes in *N. tabacum* and *C. roseus* as well. Transient silencing of *CrLIM* in *Catharanthus* indicated an up-regulation of key terpenoid indole alkaloid (TIA) pathway genes.

Activity : Cloning, characterization and expression studies of α -bisabolene synthase gene from *Matricaria* spp.

Input: Suaib Lugman

Using degenerate primer sequences, two amplified gene fragments from cDNA of *Matricaria chamomile* flower were gel purified and cloned in pGEM-Teasy vector for sequencing. Sequencing and BLAST x analysis showed 94 and 70% identity with monoterpene synthase of *Santlum* species. Further amplification through 3' and 5' RCAE and cloning in pUC57 and sequencing followed by BLASTx analysis revealed 93% homology to Bisbolene synthase from *Santlum austrocaledonicum*.


Activity: Direct regeneration studies in Tagetes erecta

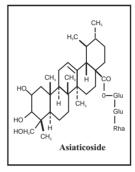
Input: Laiq-ur-Rahman

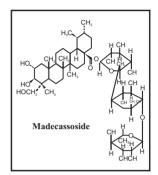
A protocol was developed for differentiation of shoot buds directly from different explants of *Tagetes erecta* like cotyledonary leaf, rachis, hypocotyls etc., using various media composition.

Gibberellic acid (GA³) plays a significant role in the induction of shoot buds and in suppressing callus formation. To increase the multiplication rate of shoot buds, various combinations of 6-benzylaminopurine and GA³ were tried. Differentiated shoots grew well and proliferated in the MS medium. The shoots developed efficient root system on same medium. Complete plants were transferred and established in soil.

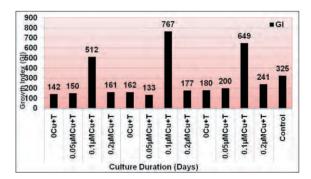
Somatic embryogenesis

Shoot regeneration from cotyledons



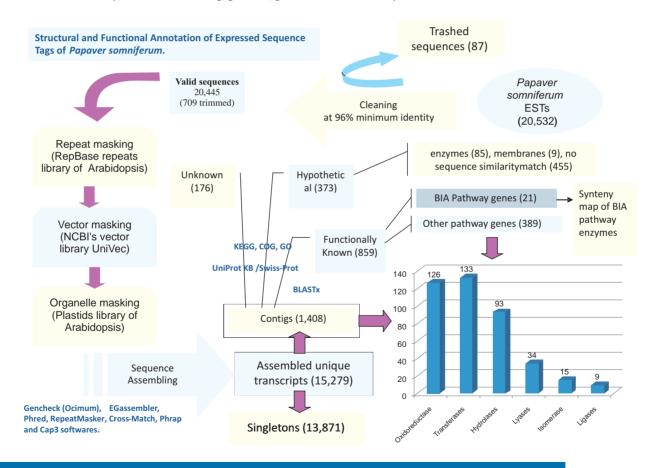

Shoot regeneration from leaf

Shoot regeneration from hypocotyl


Activity: Enhanced centelloside production in *Centella asiatica* through biotic and abiotic elicitations

Input: Archana Mathur

Improved centelloside (asiaticoside, madecassoside) production achieved with biotic/abiotic elicitation simultaneously in *in vitro* cultured multiple shoots.

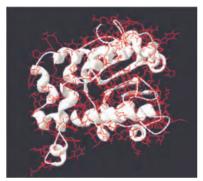

- Maximum growth Index (767) observed after addition of Cu⁺⁺ with Trichoderma culture filtrate
- Multiple shoot cultures treated with Cu⁺⁺ with *Trichoderma* culture filtrate showed maximum centelloside yield (0.381)

Journal of Natural Medicine 66(2): 383-387, 2012

Activity: Development of in silico synteny map for benzylisoquinoline alkaloids pathway enzymes

Input: Feroz Khan

To identify additional bio-synthetic steps in pharmaceutically important benzylisoquinoline alkaloids (BIA) of opium poppy using a large expressed sequence tag(EST) a total of 15279 assembled unique transcripts were identified, of which 1408 were contigs and 13871 were singleton. Hypothetical genes were observed apart from important genes related to BIA biosyntheses enzymes. This functionally annotated EST data set will be a useful resource for further studies viz. taxonomy, molecular breeding, genetics, genomics and secondary metabolism.

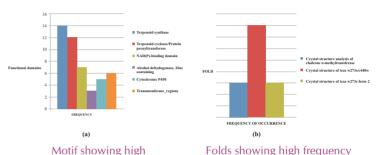


Activity: Structure prediction and functional characterization of secondary metabolite proteins of *Ocimum*

Input: Ashok Sharma

Two secondary metabolite proteins viz., eugenol o-methyl transferase and chavicol o-methyl transferase from various species of *Ocimum* were modeled using homology modeling approach. Physicochemical characterizations of the modeled proteins were performed. Secondary structure

studies showed that the modeled



Modeled structure of chavicol o-methyltransferase

proteins contain high proportion of other secondary structures i.e. beta-turns and gamma-turns. This is attributed to the presence of higher concentration of proline and glycine residues. Homology derived models are extensively used in wide range of applications such as virtual screening, site-directed mutagenesis experiments or in rationalizing the effects of sequence variation. These structures will serve as cornerstone for functional analysis of experimentally derived crystal structures.

Bioinformation 6(8): 315-319, 2011

Activity: *In silico* approaches in comparative genomics, structure prediction and functional characterization of secondary metabolite proteins of *Mentha* sp.

of occurrence in SMP

with the help of ESTs through assembly and comparative genomics was performed for *Mentha* species. It was followed by finding out the proteins which can be expressed by individual contig in *Mentha* species followed by comparative modeling /molecular threading to derive secondary metabolite protein models. Results revealed that terpenoid synthase proteins showed highest frequency of occurrence in secondary metabolite proteins. Also crystal structure of teas w273s/c440w folds were in high frequency amongst the secondary metabolite protein reported in *Mentha* species. All the generated

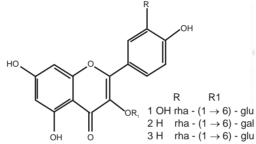
In-silico identification and characterization of expressed genes

Plant Omic Journal 4(7): 354-363, 2011 (IF 1.734)

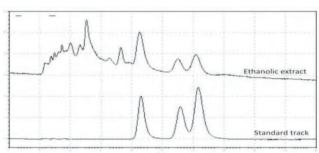
protein models were successfully submitted in Protein Model Database

Annual Report 2011-12 27

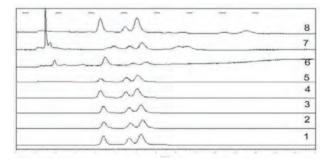
(PMDB).


frequency of occurrence in SMPs

Activity: A validated stability-indicating HPLC-PDA method for analysis of Desmodium gangeticum

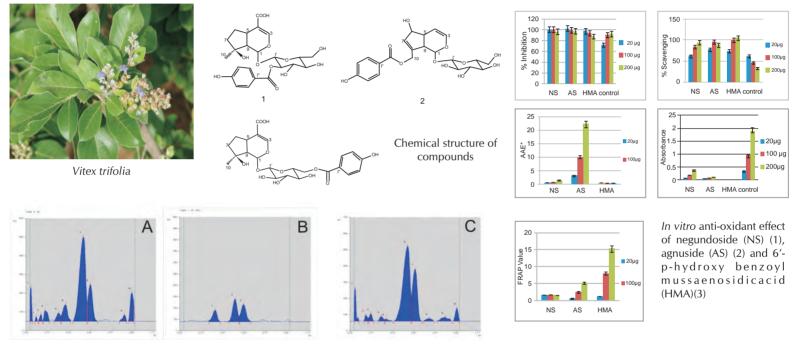

Input: MM Gupta

Desmodium gangeticum



Chemical structure of marker compounds

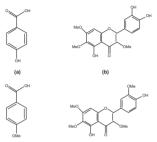
HPLC chromatogram of standard markers and extract

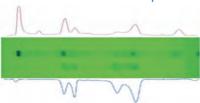

A stability-indicating reversed-phase liquid chromatographic (RPLC) method has been established for analysis of rutin (1), kaempferol-3-O-robinobioside (2), and nicotiflorin (3) in *Desmodium gangeticum*. The study was performed in the presence of the degradation products generated in the study of forced degradation. Marker compounds were subjected to stress by hydrolysis (acidic and basic), oxidation, photolysis, and thermal treatment. Under the optimized conditions, well-resolved separation of pure compounds from the degradation products with significantly different Rt values was achieved on a Spherisorb ODS2 column (250mm x 4.6 mm,10 μ m) using isocratic elution of methanol and water (0.5% acetic acid); with acceptable validation results such as linearity, sensitivity, and recovery. The reproducible and robust method may be applied for assays and stability tests of *D. gangeticum* and phytopreparations containing *D. gangeticum*.

Journal of Liquid Chromatography and Related Technologies 35: 1038-1052, 2012 (IF 0.96)

Activity: High performance thin layer chromatographic method for simultaneous quantification of major iridoids in *Vitex trifolia* and their antioxidant studies

Input: MM Gupta

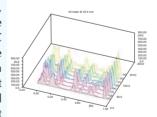

The representative HPTLC chromatograms of V. trifolia leaf extract (A), standards (B); and V. negundo leaf extract (C)


Negundoside (1), agnuside (2) and 6-p-hydroxy benzoyl mussaenosidic acid (3) are known bioactive metabolites in *Vitex trifolia*. A simple precise and reproducible method was developed for simultaneous quantitation of NS (1), AS (2) and HMA (3) and the antioxidant capacity of above markers has also been determined. Marker compounds have been resolved using silica gel 60 F254 plates, petroleum ether (60–80)/toluene/acetone/water (10:10:80:2 v/v/v/v) as the mobile phases. The method does not employ any derivatisation procedure and can be used as a quality control tool for routine analysis of drugs *V. trifolia* and *V. negundo* together with their commercial extracts. NS (1), AS (2) and HMA (3) showed significant activity in DPPH and NO radical scavenging assays.

Journal of Pharmaceutical and Biomedical Analysis 61: 207–214, 2012 (IF 2.72)

Activity: A marker based stability indicating HPTLC method for *Vitex trifolia*

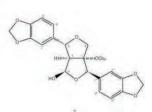
method for Vitex trifolia



HPTLC Chromatogram of markers in standard and sample

Chemical structure of marker compounds

p-Hydroxy benzoic acid (a), chrysoplenol-D (b), p-methoxy benzoic acid (c) and casticin (d) are representative flavonoids and benzoic acid derivatives in Vitex trifolia, a well-known traditional Chinese, and Ayurvedic medicine, with a wide range of biological activities. In the present study, a novel stability-indicating HPTLC method for quantitative determination of the aforementioned isolated four markers has been developed and validated on silica using solvent dichloromethane-methanol-formic acid (9.6:0.4:0.06 v/v/v) in the absorbance mode at 254 nm. It was found to be linear, accurate, precise, specific, robust, and stability-indicating and can be applied for quality control and standardization of other multi-component formulations based on Vitex trifolia.



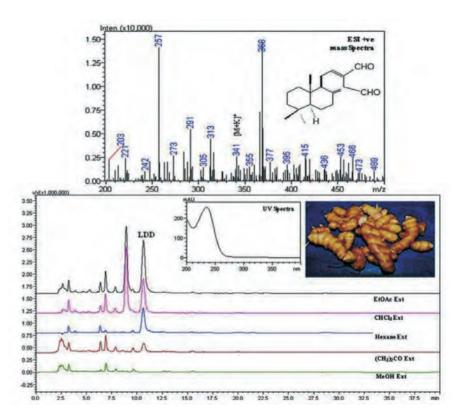
HPTLC chromatograms of samples under various degradation conditions

Journal of Liquid Chromatography and Related Technologies 34: 1925-1937, 2012 (IF- 0.96)

Activity: Chemical investigation of Premna integrifolia

Inputs: MM Gupta

Chemical structure of isolated markers from *P. integrifolia*

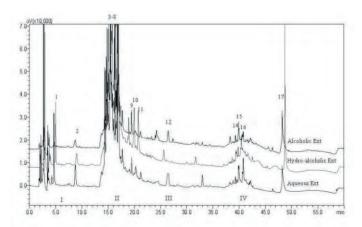

Two new furofuran lignans premnadimer (1) and 4 β -hydroxyasarinin-1-O- β -glucopyranoside (2) along with nine known compounds have been isolated from the stem-bark of *Premna*. Compounds 1, 2 together with four known iridoid glycosides were evaluated for radical scavenging and ferric reducing antioxidant power. Radical scavenging activity was found maximum in 4"-hdroxy-E-globularinin followed by 10-O-trans-p-coumaroylcatalpol and new dimer (1). In FRAP assay, premnosidic acid, 10-O-trans-p-coumaroyl-6-O- α -L-rhamnopyranosyl catalpol showed maximum ferric reducing ability supported by high reducing power.

Industrial Crops & Products 41: 397-402, 2013 (IF- 2.51)

Activity: Development of validated RPLC-PDA-MS method for the analysis of anti-tubercular agent in mango ginger (*Curcuma amada* Roxb.)

Input: Karuna Shanker

Mango ginger (Curcuma amada) is a spice of high usage in pickles, sauce, culinary formulations and traditional/folk systems of medicine for therapeutic actions in Asian countries. After establishing scheme for isolation and characterization of labdane diterpene dialdehyde [labda-8(17), 12-diene-15, 16-dial]-an antitubercular agent, a new validated HPLC-PDA method for its quantification in C. amada was developed. Chromatography was performed with reverse phase column in isocratic condition at a flow rate of 1.0 mL/min using mobile phase of acidified water and acetonitrile. Specificity of determination was achieved with UV (190-400nm) and mass spectrum. Good linearity was obtained with correlation coefficients >0.99. Present validated method allowed both the identification and determination of labda-8(17), 12diene-15, 16-dial, in C. amada rhizome. The method was applied to screen the labdane diterpene dialdehyde in the samples of different geographic locations.

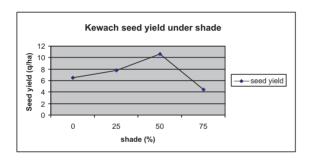

Representative HPLC fingerprints of C. amada rhizome extract (0.1g/mL) showing Labda -8 (17), 12 diene -15, 16-dial (LDD) bioactive marker along with its characteristic + Ve ESI-MS and UV spectra.

Food Chemistry 131 (1): 375-379, 2012

Activity: Application of HPLC fingerprints for defining in-vivo safety profile of Tulsi (Ocimum sanctum)

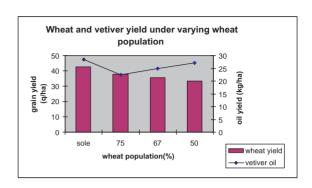
Input: Karuna Shanker

Ocimum sanctum is well known for its wide range of therapeutic activities. A methodology to define the safety of the herb with its chromatographic fingerprint has been established. We report the fingerprint method for three standardized extracts of *O. sanctum* and the correlation of the chromatographic peaks with their *in-vivo* pharmacological safety profile. HPLC fingerprint with the statistical similarity correlation were validated and used in acute and subacute toxicity studies in Charles Foster rats. Under optimized chromatographic conditions, numbers of constituents of *O. sanctum* were successfully separated by the reverse-phase HPLC methods. Various groups have been marked in the chemical fingerprint. The effects on body weight and biochemical indices were mainly related to the chromatographic peaks of group II and V. On the basis of characteristic UV spectra, it was observed that the peaks of group II were related with phenolic moieties. Further, the peak number 11 of group II was characterized as rosmarinic acid-a naturally-occurring polyphenolic compound with antioxidant and anti-inflammatory properties by reference comparison. All three extracts in both acute and sub-acute toxicity experiments were well tolerated and no adverse changes were observed in mortality, morbidity, gross pathology, body weight and biochemical parameters. This accurate and reproducible method can be used for the chemical identification standardized extract of *O. sanctum* leaves, batch-to-batch quality assurance, adulteration and their safety evaluation.

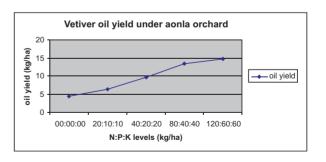


Representative RP-HPLC fingerprint of various standardized extracts of O. sanctum leaf

Activity: Performance of kewach under different levels of shade


Inputs: HS Chauhan

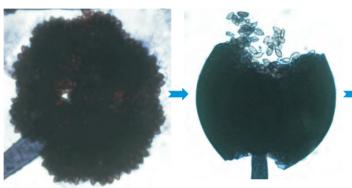
Field experiment was conducted to evaluate the performance of Kewach (*Mucuna pruriens*) cv. CIM-Ajar under different degree of shade (0,25,50 and 75%). The data showed that seed yield with 50% shade was maximum (10.6 g/ha) and significantly better than open and 75% shade.


Activity: Possibilities of relay intercropping vetiver in wheat

An experiment on yield adjustment of wheat indicated that by reducing the wheat population by 25% and 50%, loss in grain is only 11 and 21%. Twenty five to fifty per cent space was left to facilitate the timely (November) planting of vetiver as intercrop. Thus grower is assured of one highly profitable crop 22 and 27 kg vetiver oil/ha at the cost of 11% and 21% reduction in wheat yield, respectively.

Activity: Intercropping of vetiver in aonla orchard

Experimental results of vetiver in aonla orchard indicated that plant population of vetiver 1, 11,000 plants/ha and application of 80:40:40 kg NPK/ha was suitable for achieving highest 13.5 kg/ha vetiver oil.


Activity: Plant protection strategies for integrated disease management of MAPs : *Withania* wet rot caused by *Choanephora cucurbitarum*

Input: Mansoor Alam, HN Singh and Abdul Khaliq

Pathogen associated with wet rot

A new disease initially produced water soaked lesions on leaves and stems progressed to a wet rot appearing in *Withania* fields during monsoon at Lucknow and in adjoining areas of northern India.

Sporangiola

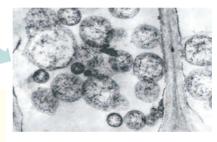
Based on cultural, morphological and molecular characteristics, fungus was identified as *Choanephora cucurbitarum* (Berk. & Ravenel) Thaxt. It's sequence was submitted to NCBI GenBank with accession no. JN639861.

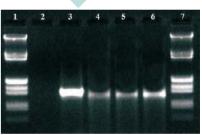
Disease was established to be caused by *C. cucurbitarum*

Plant Disease 96: 293, 2012 (IF 2.387)

Activity: Plant protection strategies for integrated disease management Study of leaf disease in *Stevia*

Input: A Samad, P V Ajayakumar and Ashutosh K Shukla

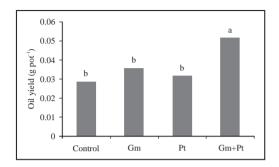

Stevia rebaudiana Bertoni (Asteraceae) is an important commercial crop that produces 'natural sweetener' which is 300 times sweeter than sucrose.



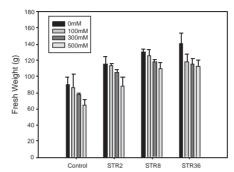
An unknown little leaf disease affected 20% of the field-grown crop resulting in significant reduction in quality and biomass through growth cessation, bronzing of mature leaves, wilting and death of plants.

Typical phytoplasma-like (pleomorphic) bodies ranging in size from 450-900 nm were observed in the phloem cells of infected plants using transmission electron microscopy

Universal phytoplasma primers followed by nested primers produced 1.5 and 1.2 kb amplicons respectively from the symptomatic plants.

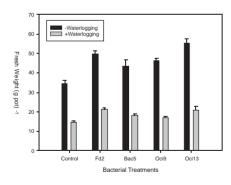

The sequence of the final PCR product shared 98.2% similarity with that of the 'Sorghum bunchy shoot phytoplasma' reference strain (GenBank accession: AF509322) that belongs to 16SrXXIV-A subgroup.

First report of a natural infection of Stevia rebaudiana by a group of 16SrXXIV-A phytoplasma

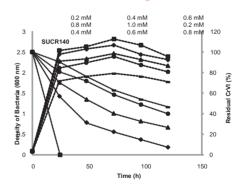

Plant Disease 95: 1582, 2011 (IF 2.387)

Activity: Microbial interventions to improve yield and reduce stress-induced damages in MAPs

Input: Alok Kalra

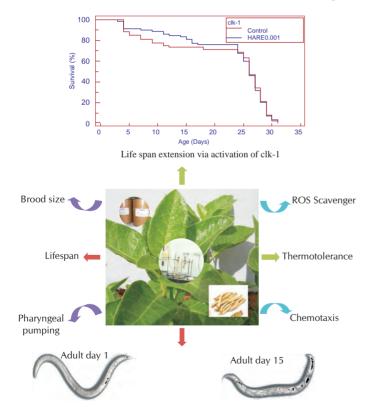

Treatment of cuttings in nursery with microbial consortium of IAA producing *Pantoea* sp. and AM fungi *Glomus aggregatum* improved oil yield in *Pelargonium graveolens*

Salt tolerant PGPRs Halomonas desiderta (STR 8) and Exiguobacterium oxidotolerans (STR 36) protected plants from 300mM NaCl stress in Mentha arvensis


Protection from water logging

ACC deaminase producing *Achromobacter xylosoxidans* (Fd2) and *Ochrobactrum rhizosphare*ae (Oci13) improved growth under water logging stress in *Ocimum sanctum*.

Chromate reducing bacteria



Microbacterium sp.(Sucr 140) an efficient chromium reductase producing bacteria reducing Cr(VI) within 24 hr

Activity: Antiaging and stress tolerance potential of hydroalcoholic root extract of *Withania somnifera* in *Caenorhabditis elegans* via activation of clk-1

Input: Rakesh Pandey

The hydro-alcoholic root extract (HARE) of *Withania somnifera* (L) Dunal, has increased life span (14%) with reduction of free radicals level in *C. elgans*. Exploration of life span increasing mechanism through mutants and different effective doses exhibited diverse mode of actions of *W. somnifera* through clk-1.

Activity: Field testing and demonstration of improved version of khus digger

Input: JP Tiwari

Manual harvesting of long khus roots is a major challenge and a costly affair. Mechanized approach is a potential alternative to make the process efficient and cost effective. Previously developed prototype model of khus digger has been improved further based on feedback.

The advance version of khus digger has been tested at the farmer's field at Bambhaur village, Mahmoodabad, district Sitapur, UP. Performance has been found satisfactory and better than previous version.

Activity: Chemical investigations of important MAPs

Input: L N Misra

The bark of *Saraca asoca* has been extracted with various solvents. These extracts are being investigated for their chemical constituents. The n-hexane extract after isolation and purification has yielded several triterpenoids and steroids, viz. ursolic acid, lupeol, campesterol, ß-sitosterol, gluchidiol, stigmasterol, etc. Among them, ursolic acid is a well known biologically active molecule and lupeol and ß-sitosterol are the other major active compounds. The methanol and aqueous methanol extracts are being chemically investigated.

Zanthoxylum zanthoxyloides and Z. leprieurii have been chemically investigated for their chemical constituents. This is the first report that the fruits of Z. zanthoxyloides have yielded several acridone alkaloids. Among them, zanthacridone alkaloids are being reported having a new type of acridone carbon skeleton. One of the isolated alkaloids showed a promising activity with an IC_{50} of $26 \mu g/mL$ against WRL-68 (liver cancer cell lines).

The major compounds, viz. withaferin A, withanone have been isolated in larger amounts from *W. somnifera* leaves. Chemical transformation has been attempted for value addition in their biological activities. Structure activity relationship is being studied with respect to the various functional groups of withasteroids.

J Asian Nat Prod Res, 14, 39-45, 2012 Ind Crop. and Prod., 37, 195-99, 2012

Malaria Journal, 2010, 9 (Suppl2): P30

Parasitology Research, 2011 Oct; 109(4): 1003-8.

Anti-malarials from medicinal and aromatic plants Response to selection for artemisinin content in different gene enrichment cycles Input: Anirban Pal and team 1.3 1.2 1.1 First four cycles represent: Synthesi or gene enrichment cycles No. of proteins Lines were extracted in the 5th cycle 0.9 and population stabilization was 0.8 done after that Stabilized population is in 2nd stage 0.7 evaluation (biomass vield) trial 2007.08 2008.09 2009.10 2010-11 Proteome of P. falciparum similar to Human known Genetic improvement *In-silico* approach for artemisinin content using classical breeding **Activity limits** Parasite inhibition $In\text{-}vitro < 50\mu g$, 38 plants→108 test **Vector Control** In-vivo 100mg/kg samples→36 (17 plants) bd.wt. active in-vitro→ Anti-malarials 5 moderately active from Medicinal and in-vivo **Aromatic Plants** Vasicine Isolated from Adhathoda vasica a developmental inhibitor and Chemical Biology Drug Design, 2012, 79: 610-615. insecticidal against Aedes aegypti Scandinavian Journal of Immunology, 2011, 74 (6): 522-547.

Activity: Detection of antitubercular activity in *Ammannia baccifera*

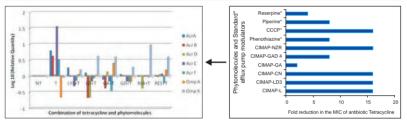
Input: SK Srivastava, Dharmendra Saikia

Ammannia baccifera

Chinese herbal formulation to cure — female infertility, spinal disease, common cold, skin and other diseases.

- 1: Betulinic acid
- 2: 4-hydroxy-a-tetralone
- 3: Tetralone-4-O-ß-D-glucopyranoside
- 4: Ellagic acid

Anti-tubercular potential of *Ammannia baccifera* (Linn.)


Anti-tubercular activity

Anti-tubercular activity					
43	200	Compound	MIC (μg/ml		
		2	50		
All Land	1963	2B	100		
0		2E	50		

Activity: Bacterial efflux pump modulatory effect of phytomolecules

Input: MP Darokar, SK Srivastava, AS Negi

The phenomenon has been exploited for the indentification of phytomolecules such as CIMAP-LYS, CIMAP-GA, and CIMAP-NIA that reduced the MIC of antibiotic up to 16 folds by modulating the regulation of genes involved in efflux pump that are responsible for extrusion of antibiotics in Gram-negative bacteria. This will be useful in bringing back old antibiotics which have become non-functional because of acquired resistance by human pathogenic bacteria.

Combined effect of tetracycline and phytomolecules on expression of RND efflux pump and porin forming genes in clinical isolate of *E. coli* analyzed through real time PCR (RT-PCR)

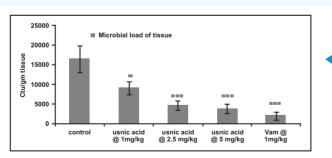
Reduction in the MIC of tetracycline in presence of phytomolecules as compared to known efflux pump modulators

Planta Medica 78: 79-81, 2012 (IF 2.183)

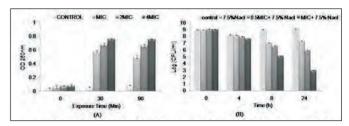
Activity: Development of standardized herbal formulations after shave gel

Input: N P Yadav

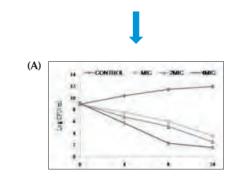
A unique after shave gel enriched with 100% herbal actives, amalgmantion of antimicrobial cooling effect of CIM1166 with rejuvenating effect of *Aloe vera* was developed.

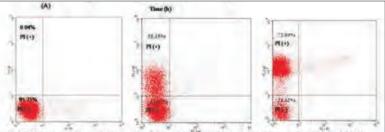


Activity: Usnic acid exerts antibacterial action through membrane disruption in Staphylococcus aureus


Input: MP Darokar, SK Srivastava, Anirban Pal

Usnic Acid an anti-MRSA Phytomolecule

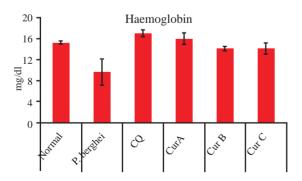

Activity guided fractionation and extraction of fruticose lichen, *Usnea subfloridiana* resulted into a bioactive constitutent, usnic acid. Further, therapeutic potential of usnic acid was investigated against clinical isolates of methicillin resistant *Staphylococcus aureus* (MRSA). The MIC of usnic acid against the clinical isolates of MRSA was in the range 25-50 μ g/mL. In the cells treated with usnic acid, loss of 260 nm absorbing material and increase in propidium iodide uptake was observed. Similarly, combined effect of the usnic acid and NaCl resulted in reduced number of viable cells. These observations clearly indicate that usnic acid exerts its action by disruption of the membrane. *In-vivo* efficacy showed that usnic acid significantly (p<0.0001) lowered the microbial load and did not exhibit significant toxicity with respect to liver, kidney and lipid metabolism.



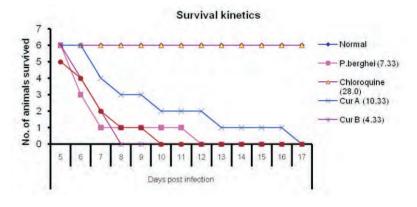
Dose dependent in-vivo anti-staphylococcus efficacy of usnic acid

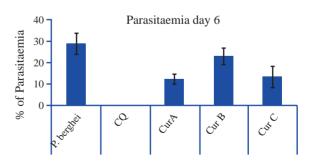
Appearance of 260 nm absorbing material (A) and salt tolerance ability of MRSA-ST 2071 (B) after treatment with usnic acid

Time kill dynamics (A) and flow cytometry histograms of MRSA-ST 2007 (B) in the presence of usnic acid


European Clinical Microbiology and Infectious Diseases 31(12): 3375-3383, 2012

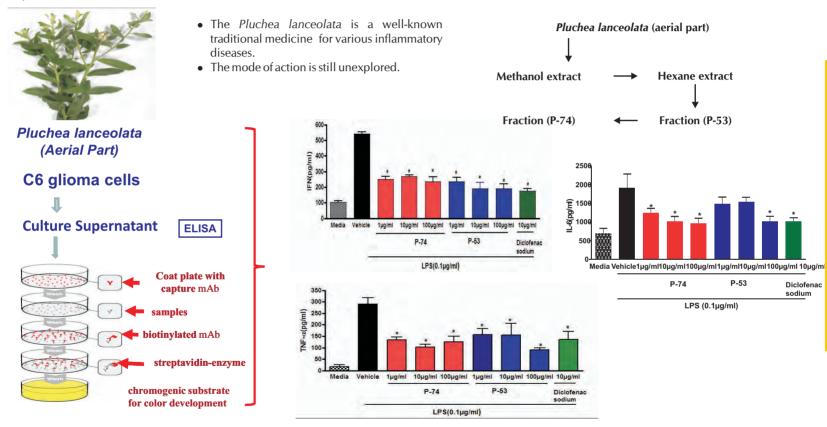
Annual Report 2011-12 41


(B)


Activity: Antimalarial potential of curcumin and its derivatives

Input: AS Negi and Anirban Pal

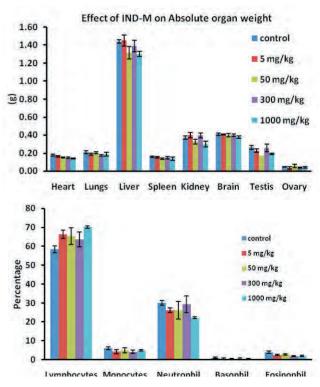
Comparative antimalarial potential of curcumin, demethoxycurcumin and bisdemethoxycurcumin at 100 mg/kg bd wt. when compared to chlorofine @ 10 mg/kg against *Plasmodium bergnei* (K173) in Swiss albino mice



-

Activity: Anti-inflammatory effects of P-53 and P-74 isolated from *Pluchea lanceolata* on lipopolysaccharide-induced inflammation in C6 glioma cells

Input: DU Bawankule, Karuna Shanker

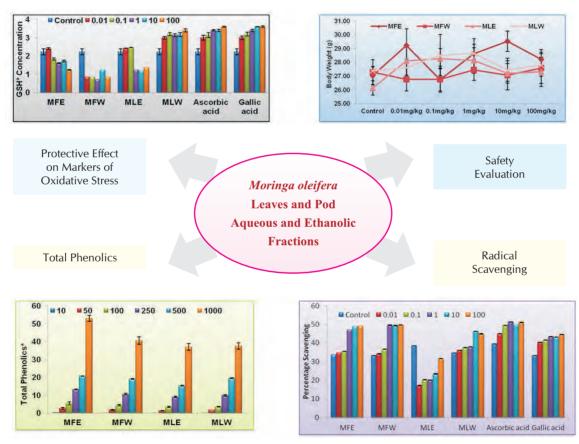

The result of the study demonstrated that the LPS $(0.1\mu g/ml)$ stimulation to the C6 rat glioma cells for 24 hr significantly increased the production of inflammatory mediators and pre-treatment of P-53 and P-74 at 1,10 and $100\mu g/ml$ exhibits the significant (P < 0.05) reduction of inflammatory mediators in a dose-dependent manner. These fractions may further validation in in-vivo models of neuroinflammation-associated disorders.

Activity: Acute oral toxicity study of IND-M in Swiss albino mice

Input: D Chanda, AS Negi

In view of potent anti-cancer activity in *in-vitro* model, acute oral toxicity of IND-M was carried out in Swiss albino mice for its further development into drug product. No observational changes, morbidity and mortality were observed throughout the experimental period upto the dose level of 300 mg/kg body weight and the experiment showed that IND-M is well tolerated by the Swiss albino mice up to the dose level of 300 mg/kg body weight as a single acute oral dose.

Parameters	Dose of IND-M at mg/kg body weight as a single oral dose					
	Control	5 mg/kg	50 mg/kg	300 mg/kg	1000 mg/kg	
Body weight (g)	30.42±1.25	30.38±0.77	28.37±1.42	29.35±1.63	30.69±0.83	
SGPT (U/L)	9.30±0.89	6.90±0.17	9.77±0.77	9.16±1.14	19.68±1.78a	
SGOT (U/L)	20.47±2.07	18.74±1.54	20.66±1.15	26.55±3.23	19.38±3.49	
ALKP (U/L)	83.29±9.77	82.51±3.04	94.24±8.83	90.11±5.42	171.12±15.91a	
Haemoglobin (g/dL)	13.38±1.00	11.31±1.14	12.93±0.98	11.46±0.76	12.21±1.46	
Serum total cholesterol (mg/dL)	116.07±8.86	109.42±5.46	125.69±5.90	117.57±3.45	118.60±6.07	
Serum triglycerides (mg/dL)	101.29±5.18	112.69±3.75	90.62±8.41	113.15±3.65	97.44±6.96	
Serum creatinine (mg/dL)	0.47±0.06	0.53±0.04	0.45±0.05	0.56±0.07	0.42±0.09	



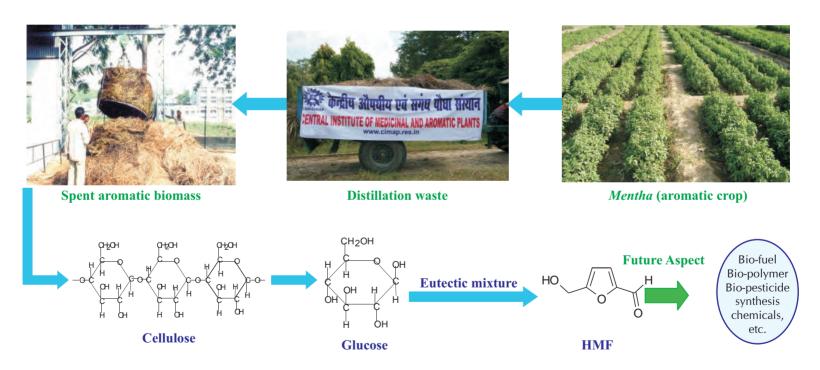
Bioorg. Med. Chem. 20: 3049-3057, 2012, (IF 2.978)

Activity: Experimental assessment of Moringa oleifera for different biological activity

Input: Suaib Luqman

A concentration dependent effect of aqueous extrct of *Moringa olifera* leaves on markers of oxidative stress exhibited increased GSH and reduced MDA level whereas ethanolic extract of fruit showed highest phenolic content, strong reducing power and free radical scavenging capacity.

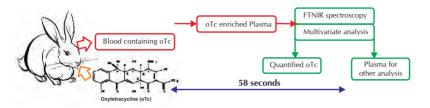
Evidence-Based Complementary and Alternative Medicine: 519084, 2012 Current Chemical Biology, 5 (3): 213-218 (IF 2.964), 2011


45

Activity: Biofuel and bio-chemicals from MAPs spent/distillation waste

Input: PK Rout, AD Nannaware

MAPs farmers in India produced >6million tons of spent biomass. CSIR-CIMAP initiated project on conversion of this waste in valuable bio-chemicals (Indian Patent No.:228NF2011).


- New treatment process for isolation of cellulose from spent biomass.
- New economical green process for producing hydoxymethyl fufural from cellulose.
- Hydroxymethyl furfural is a potential bio-precursor molecule for bio-fuel, bio-polymer, bio-pesticides and synthetic chemicals.

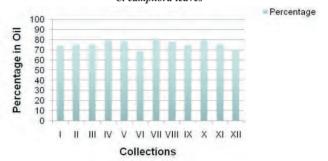
46

Activity: Non destructive, instant and green method for quantification of oxytetracycline (oTc) from plasma

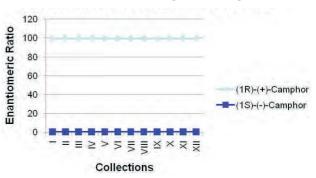
Input: PV Ajaykumar, D Chanda and Anirban Pal

Oxytetracycline (oTc) is one of the most common anti-biotics in use, was considered for the development of a quick, non destructive method through FTNIR spectroscopy. oTc was orally administered to rabbit and blood was collected at various time points for anlaysis through FTNIR and its validation through HPLC. The multivariate analysis could significantly assess the quantity of oTc in plasma. The method can now be utilized for pharmacokinetic interaction studies with herbal bioactives.

Advantages:

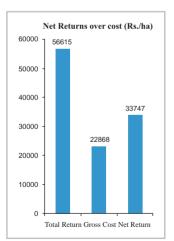

- No matrix extraction process
- No solvents used
- Plasma can be re-used immediately for other biochemical parameters
- Extremely quick

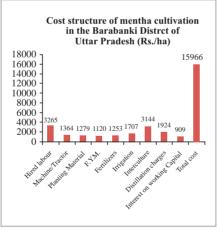
Activity: Chirality of camphor enantiomers in *Cinnamomum camphora* essential oil


Input: CS Chanotiya and Anju Yadav

Chirality of camphor enantiomers in *C* camphora essential oil was analytically examined over a year and it was observed that enantiomeric ratio of (1R)-(+) and (1S)- (-) camphor was 99:1, which happens to be different from synthetic camphor.

a. Seasonal variation of camphor content in C. camphora leaves


b. Enantiomer ratio of camphor in C. camphora



Activity: Economic analysis of menthol mint at farmer's field

Input: Sanjay Kumar, Ram Suresh, Virendra Singh and AK Singh

The study carried out in the Barabanki district of Uttar Pradesh has shown that the major portion of operational cost is shared by hired labour, interculture operations, distillation charges, irrigation and machine / tractor charges. The overall benefit - cost ratio has been found to be 2.55, which indicates a higher profit for farmers with lesser investment in mint cultivation. The independent variables like human labour, machinery, manures and fertilizer, irrigation charges and intercultural operations have shown a positive and significant impact on the returns of mint crop in the study area. The major problems faced by the farmers were high input cost, erratic supply of electricity, lack of adequate information, infrastructural facilities, regulated markets and energy - efficient distillation units.

(Gross cost Rs.22868/- include interest on capital assets + rental value of own land + family labour)

Agricultural Economic Research Review 24: 345-50, 2011

Activity: CSIR-CIMAP Kisan Mela

Input : Sanjay Kumar, AK Singh, VKS Tomar, RP Bansal, Alok Krishna, Ram Suresh

CSIR-CIMAP-Kisan Mela was organized on 31st January, 2012 at Lucknow in which about 1500 farmers including women and entrepreneurs from different parts of the country participated. On this occasion, consultancy agreements were signed with M/s Emami Biotech Limited, Kolkata and M/s. IPCA lab, Ratlam.

Exchange of agreement with Emami Biotech

Exchange of agreement with IPCA Lab

Activity: Consultancy/Technical Services

Input: Sanjay Kumar, VKS Tomar, AK Singh, Ram Suresh

Consultancy services to four firms namely, M/s Emami Biotech Limited, Kolkata (WB), M/s IPCA Lab, Ratlam (MP), Divisional Forest Office Renukoot (UP) and NIIST, Thiruvanthapuram were rendered. An amount of Rs approx. 31.0 lakhs was received as consultancy fee.

Activity: Entrepreneurial trainings

Input: Sudeep Tandon

Entrepreneurial Training-cum-Workshop on Essential Oil Processing Technologies (EOPT - 2011)

A six day hands on entrepreneurial training cum workshop on essential oil processing technologies (EOPT-2011) for budding entrepreneurs interested in setting up of units for processing and value addition of essential oils was organized from 23rd - 28th May 2011. Twelve participants from the states of Karnataka, Andhra Pradesh, Manipur, Delhi and UP participated in the workshop.

Entrepreneurial Training-cum-Workshop on Aloe vera

Processing (AVPT - 2011):

Input: Sudeep Tandon

A four day hands on entrepreneurial training workshop (AVPT-2011) for budding entrepreneurs interested in setting up of units for processing of *Aloe vera* for juice, sap and gel was organised from 20-23 December 2011. Twenty five participants from the states of Bihar, Rajasthan, Maharashtra, Andhra Pradesh and UP attended the program.

Entrepreneurial training for the residents of Uttarakhand

Input: AK Singh, Sanjay Kumar and Team

Four training programs on MAPs cultivation and processing were organised for Uttarakhand region for approximately 100 participants.

Entrepreneurial training for women

Input: RP Bansal, AK Singh

Two training programs for women were organised in Lucknow in which 34 participants attended.

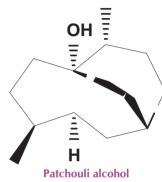
Farmers' training programme

Input: VKS Tomar, Alok Krishna, AK Singh, Sanjay Kumar, Ram Suresh Sixteen training programes in different districts namely Lucknow, Barabanki, Jabalpur, Nagaon, Churachandrapur and Kopergaon were organised. A total of 790 persons attended.

Survey and feedback studies

Input: Alok Krishna

Conducted survey of organic tulsi growing area in Rath Hamirpur, Uttar Pradesh and interacted with more than 300 growers for data collection on cultivation and economics along with constraints faced by the farmers.


Conducted survey of rainfed area of Jhansi, Bundelkhand, Uttar Pradesh for collection of soil samples from more than two dozen farmers for microbial biodiversity and status of NPK and other micronutrients studies in soil for possible recommendations for MAPs cultivation.

Activity: Chemical diversity in Valeriana jatamansi essential oil

Input: RS Verma

To explore variability in the essential oil yield and composition of Indian Valerian (*Valeriana jatamansi*) growing wild in Uttarakhand, seventeen populations were collected from different locations and grown under similar conditions. Comparative results showed considerable variations in the yield (0.21% to 0.46%) and composition of root essential oils. The chromatographic analysis of the oils and subsequent classification by principal component analysis (PCA)enabled to make six clusters with significant variations. Major components in the essential oils of the different populations were patchouli alcohol (13.4-66.7%), α -bulnesene (<0.05-23.5%), α -guaiene (0.2-13.3%), guaiol (<0.05-12.2%), seychellene (0.2-9.9%) viridiflorol (<0.05-7.3%), and β -gurjunene (nil-7.1%).

Chemistry & Biodiversity, 8 (10),1921-1929, 2011 (IF 1.586)

Activity: Comparative composition of root and rhizome essential oils of Valeriana jatamansi

Essential oils derived from the roots and rhizomes of the *Valeriana jatamansi* were compared for their chemical compositions. The amount of patchouli alcohol (48.7-55.1%), viridiflorol (0.9-2.1%), and isovaleric acid (3.1-5.0%) was observed to be higher in rhizome oil, whereas amounts of the α -bulnesene (12.0-13.1%), α -guaiene (8.7%), sechellene (4.8-5.9%), α -patchoulene (2.3-2.5%), bornyl acetate (1.9-2.3%), and a-patchoulene (1.5-1.7%) were relatively higher in root oil.

Activity: Assessment of similarities and dissimilarities in the essential oils of Patchouli and Indian Valerian

Two chemically alike essential oils derived from two disjunct genera, viz. patchouli (*Pogostemon cablin*) and Indian Valerian (*Valeriana jatamansi*) were investigated for identification of marker compounds. Inspite of huge chemical resemblance (78.5-90.3%) these two essential oils can be authenticated by their characteristics minor or trace constituents. The marker constituents identified for *P. cablin* oil were pogostone, pogostol, and (Z)-thujopsene, whereas marker constituents for *V. jatamansi* oil were 3-methyl valeric acid, thymol methyl ether, carvacrol methyl ether, bornyl acetate, kessane, maaliol, xanthorrhizol, and 8-acetoxy patchouli alcohol. These constituents may be utilized as an important tool in oil authentications.

V International Conference on Vetiver (ICV-5)

International Conference on Vetiver was organised for the first time in India at CSIR-CIMAP, Lucknow from 28-30 October 2011. It was fifth in the series with the conference theme "Vetiver and Climate Change". As a pre-conference activity, the Chairperson of The Vetiver Network International (TVNI) the Her Royal Highness Princess Maha Chakri Sirindhorn of Thailand planted two Thai endemic plants named after her, namely Champee Sirindhorn (*Magnolia sirindhorniae* Noot. & Chalermglin) and Sirindhorn Walli (*Bauhinia sirindhorniae* K. & S.S. Larsen), at the CSIR- Central Institute of Medicinal and Aromatic Plants, Lucknow and also at the CSIR-National Botanical Research Institute, Lucknow on 27th October 2011.

The opening ceremony of the conference was held on 28th October at CSIR-CIMAP with Her Royal Highness Princess Maha Chakri Sirindhorn as the Chief Guest who declared open the Conference. In her inaugural address she pinpointed the newer roles, including application of 'Vetiver Grass Model' in mitigating the atmospheric carbon in addition to the significant impact the Vetiver System has made in solving various environmental problems and mitigating the adverse effect of climate change. She expressed that brainstorming during the conference, apart from discussing and viewing the latest applications of the Vetiver System Technology, shall advance further to the next step that would lead to great benifit to all mankind.

On this occasion Prof. Ram Rajasekharan, Director CSIR-CIMAP released a seed infertile autopolyploid clone of Vetiver named "Khus-40" developed at CIMAP, Lucknow. This clone has value in ecological plantations for soil conservation and carbón sequestration. The Conference was atended by over 90 foreign delegates representing 20 countries and 70 Indian participants. The delegates included leading practitioners, experts, and policy makers associated with Vetiver System applications from all over the world. There were 70 oral and 30 poster presentations, including lead Plenary lectures by the international experts and Award winners, covering the theme areas: (i) Climate Change and potential contribution of the Vetiver System, (ii) Infrastructure protection and pollution control, (iii) Recent global innovations in R & D and its applications, and (iv) Other contributions to Vetiver System, relating to Vetiver oil and processing, economic and social uses of vetiver bye-products, general aspects and basic studies. The book of abstracts, unedited proceedings, and powerpoint presentations made at the ICV-5 are available on www. vetiver.org. The book of abstracts (Souvenir) contains messages from lead vetiverites who have pioneered and championed the cause of Vetiver System applications in a global perspective. In addition to interactive deliberations, one of the unique attraction of the Conference was vetiver handicrafts training class. The host institute CIMAP instituted ICV-5 poster awards were given to the five best posters presented during the conference.

The conference concluded with specific recommendations emphasizing the need to: (i) Develop right kind of plant material for specific applications, (ii) Participation of public-prtivate partnership and involvement of youth forcé for implementation, (iii)Establishment of bioenginnering standards, (iv) Documentation of C-sequestrtation and water recharge, bioenery and phytoremediation potential of vetiver system technology, (v) Synthesis of available information in simple way and local languages for disdeminsation, (vi)Strong follow-up of the deliberations of the conference, take advantage of Dick Grimshaw's blog, (vii) Development of economic model for benefit sharing with local communities. It was announced that next ICV-6 shall be held in Da Nang, Vietnam in 2114 on the theme "Vetiver and Energy"

The 80th Annual Meeting of the Socieity of Biological Chemists (SBC), India

The 80th Annual Meeting of the Society of Biological Chemists (India) on the theme Metabolic Pathway Modulations - "Applications in Health and Agriculture" was organized at CSIR-CIMAP, Lucknow from 12-15 November 2011. The presidential address was delivered by Prof. V. Nagaraja on the topic "Design of restriction enzyme active site plasticity-evolution of new functions". The conference was spread in eight technical sessions under the themes of Genes and Gene regulation, Macromolecules-Structure and Function, Biofuel, Bioengineering and Technology, Clinical Biochemistry, Metabolic Pathways and Engineering, Systems Biology, Disease Biology, Plant Biochemistry, Immunology, Molecular Nutrition, Cellular Signalling, Microbial Technologies, Plant Growth and Development, Stress Physiology with oral and poster sessions. The I.S. Bhatia memorial award was conferred to Prof. Ram Rajasekharan on the topic "Triacylglycerol (oils and fats) biosynthesis in eukaryotes". The conference was attended by about 600 participants covering almost all the regions of the country.

Research Publications

- Agarwal Jyoti, Singh Surya Pratap, Chanda Debabrata, Bawankule Dnyaneshwar Umrao, Bhakuni R S, Pal Anirban 2011. Parasitology Research 109:1003 -1008
- 3. Awasthi Ashutosh, Bharti Nidhi, Nair Priya, Singh Rakshpal, Shukla Ashutosh K., Gupta Madan M., Darokar Mahendra P., Kalra Alok 2011 . Applied Soil Ecology 49:125-130
- 4. Banerjee Suchitra, Singh Sailendra, Rahman Laiqur 2012. Biotechnology Advances 30:461-468
- 5. Banerjee Suchitra, Singh Sailendra, Pandey Harshita, Pandey Pallavi, Rahman Laiqur 2012. Industrial Crops and Products 36:383-388
- Chanda Debabrata, Saikia Dharmendra, Kumar J K, Thakur J P, Agarwal Jyoti, Chanotiya C S, Shanker Karuna, Negi Arvind Singh, 2011. Bioorganic Medicinal Chemistry Letters 21: 3966-3969
- 7. Chanotiya C S, 2012. Editorial: In Medicinal Aromatic Plants Journal, 1:e104-e104
- 8. Chauhan Amit, Verma Ram Swaroop, 2011. Current Science 101: 489.
- 9. Chauhan Amit, Verma Ram S, 2011. Journal of Economic and Taxonomic Botany 35:455-464
- Dhawan Sunita Singh, Rai Gaurav Kumar, Darokar Mahendra Pandurang, Lal Raj Kishori, Mishra Hari Om, Khanuja Suman PS, 2011. Genetics and Molecular Research 10: 2049-2056
- 11. Dutta Subhra, Chowdhury Anindya Roy, Srivastava Santosh Kumar, Ghose Ilora, Dutta Kasturi, 2011. Free Radical Research 45:1279-1288.
- 12. Gupta Anil Kumar, Verma Sevak Ram, Gupta Madan Mohan, Saikia Dharmendra, Verma Ram Kumar, Jhang Tripta, 2011. Journal of Tropical Medicinal Plants 23:321-337

- Gupta Sanchita, Mishra Manoj, Sen Naresh, Parihar Rashi,
 Dwivedi Gaurav Raj, Khan Feroz, Sharma Ashok, 2011. Chemical
 Biology & Drug Design 78: 734-738
- 15. Kalani Komal, Yadav Dharmendra Kumar, Srivastava Santosh Kumar, Suri Nitasha, 2012. Journal of Molecular Modeling 18: 3-3413.
- 16. Kumar Birendra, Verma Sanjeet Kumar, Singh Hemendra Pratap 2011. Effect of temperature on seed germination parameters in Kalmegh (*Andrographis paniculata Wall. ex Nees*). *Industrial Crops and Products* **34**(1):1241-1244.
- 17. Kumar Birendra, Patra Nirmal Kumar 2012. Inheritance pattern and genetics of yield and component traits in opium poppy (*Papaver somniferum L.*). *Industrial Crops and Products* **36**(1): 445-448.
- 18. Kumar Birendra 2012. Prediction of germination potential in seeds of Indian Basil (Ocimum basilicum L.) Journal of Crop Improvement 26(4): 532-539.
- Kumar Birendra, Verma Sanjeet Kumar, Ram Govind, Singh Hemendra Pratap 2012. Temperature relations for seed germination potential and seedling vigour in Palmarosa (Cymbopogon martinii). Journal of Crop Improvement 26(6) 791-801.
- Khan Feroz, Yadav Dharmendra Kumar, Maurya Anupam, Kausik Sonia, Srivastava Santosh Kumar, 2011. Letters in Drug Design & Discovery, 8:469-490
- 22. Khare P., Sonane M., Pandey Rakesh, Ali S., Gupta K.C., Satish A, 2011. Journal of Biomedical Nanotechnology 7: 116-117.
- 23. Luqman Suaib, Kumar Ritesh, 2011. Current Chemical Biology 5: 213-218

- 24. Luqman Suaib, Meena Abha, Marler Laura E, Kondratyuk Tamara P, Pezzuto John M, 2011. Journal of Medicinal Food 14: 1344-1351
- Luqman Suaib, Srivastava Suchita, Kumar Ritesh, Maurya Anil Kumar, Chanda Debabrata, 2012. Evidence-Based Complementary and Alternative Medicine 2012: 519084-519084
- 26. Manika N, Mishra Priyanka, Kumar Narendra, Chanotiya C S, Bagchi G D, 2012. Journal of Medicinal Plants Research 6: 2875-2879
- 27. Mathela C S, Chanotiya C S, 2011, J. Indian Chem. Soc. 88:1811-1816
- 28. Maurya Anupam, Gupta Shikha, Srivastava Santosh Kumar, 2011. Separation Science and Technology 46: 1195-1199
- 29. Maurya Anupam, Srivastava Santosh Kumar, 2012. Journal of Brazilian Chemical Society 23: 468-472.
- 30. Meena Abha , Yadav Dharmendra Kumar, Srivastava Ankit, Chanda Debabrata, Khan Feroz, Chattopadhyay Sunil K, 2011. Chemical biology & drug design 78: 567-579
- 31. Misra LN, Misra P, Pandey A, Sangwan RS, Sangwan NS, 2012. Journal of Asian Natural Product Research 14: 39-4532
- 32. Misra A , Srivastava N K, Srivastava A K, 2011. International Journal of Biodiversity and Conservation 3: 451-454
- 33. Misra A , Srivastava N K, 2011. African Journal of Pharmacy and Pharmacology 5:1983-1989
- 34. Negi Arvind Singh, Luqman S, Srivastava S, krishna V, Gupta N, Darokar M P, 2011. Pharmaceutical Biology 49: 669-673
- 35. Osman Magda Abbaker, Dhawan Sunita Singh, Bahl Janak Raj, Darokar Mahendra Pandurang, Khanuja Suman PS, 2011. Natural Product Communications 6: 1679-1682
- 36. P. V. Ajaya Kumar, Chanda Debabrata, Pal Anirban, Singh Mahendra P, Samad A, 2012. Journal of Pharmaceutical and

- Biomedical Analysis 58:157-162
- 37. Padalia Rajendra Chandra, Verma Ram Swaroop, 2011. Natural Product Research 25: 1727-1732
- 38. Padalia Rajendra Chandra, Verma Ram Swaroop, Sah Archana Negi, Karki Neha, Sundaresan Velusamy, Saikia Dharamendra, 2011. Asian Journal of Traditional Medicine 6: 73-82
- 39. Padalia Rajendra Chandra, Karki Neha, Sah Archana Negi, Verma Ram Swaroop, 2011. Journal of Essential Oil Bearing Plants 14: 610-616
- 40. Padalia Rajendra Chandra, Verma Ram Swaroop, Chauhan Amit, 2011. Indian Perfumer 55: 41-44
- 42. Pal Shaifali, Singh Shefali, Shukla Ashutosh K., Gupta Madan M., Khanuja Suman P.S., Shasany Ajit K, 2011. The Journal of Horticultural Science & Biotechnology 86: 391-397
- 43. Pal Anirban, Bawankule Dnyaneshwar Umrao, Darokar Mahendra Pandurang, Gupta Subhas Chandra, Arya Jai Shanker, Shanker Karuna, Gupta Madan Mohan, Yadav Narayan Prasad, Khanuja Suman Preet Singh, 2011. Biomedical Chromatography 25: 641-645.
- 44. Pandey Rakesh 2011. Indian Phytopathology 64:182-185
- 45. Pandey Rakesh, Mishra A. K., Tiwari S., Singh H.N., Kalra A, 2011. Journal of Plant Interactions 6: 247-253
- 46. Patel Suman, Gaur Rashmi, Upadhayay Mohita, Mathur Archana, Mathur Ajay Kumar, Bhakuni Rajendra Singh, 2011. Journal of Natural Medicine (2011) 65: 646-650
- 47. Pragadheesh VS, Yadav Anju, Chanotiya C S, Rout P K, Uniyal G C, 2011. Natural Prod Communications 6: 1333-1338
- 48. Prakasham A P, Saxena A K, Luqman Suaib, Chanda Debabrata, Kaur Tandeep, Gupta Atul, Yadav Dharmendra K, Chanotiya Chandan S, Shanker Karuna, Khan Feroz, Negi Arvind S, 2012. Bioorganic Medicinal Chemistry 20: 3049-3057

- 49. Prakasham A P, Shanker Karuna, Negi Arvind Singh, 2012. Steroids 77: 467-470
- 50. Prasad Archana, Mathur Archana, Singh Manju, Gupta Madan Mohan, Uniyal Girish Chandra, Lal Raj Kishori, Mathur Ajay Kumar, 2012. Journal of Natural Medicine 66: 383-387
- 51. Prasad Archana, Pragadheesh V S, Mathur Archana, Srivastava Neel Kamal, Singh Manju, Mathur Ajay Kumar, 2012. Industrial Crops and Products 35:309-312
- 52. Qidwai Tabish, Khan Feroz, 2011. Scandinavian Journal of Immunology 74: 522-547
- 53. Ravindra Nagawara Seshagirirao, Ramesh Srinivas Iyer, Gupta Mahesh Kumar, Jhang Tripta, Shukla Ashutosh K, Darokar Mahendra Pandurang, Kulkarni Raghavendra Narayanrao, 2012. Journal of Crop Science and Biotechnology 15: 33-39
- 54. Roy Sudeep, Chauhan Rashi, Maheshwari Nidhi, Gupta Sanchita, Gupta Dwijendra Kumar, Sharma Ashok, 2012. Plant Omics Iournal 4: 354-363
- 55. Roy Sudeep, Maheshwari Nidhi, Chauhan Rashi, Sen Naresh Kumar, Sharma Ashok, 2012. Bioinformation 6: 315-319
- 56. Sabir Farzana, Sangwan Rajender S, Kumar Ritesh, Sangwan Neelam S, 2012. Journal of Plant Growth Regulation 9: 1-12
- 57. Samad Abdul, Dharni Seema, Singh Mridula, Yadav Sneha, Khan Asifa, Shukla Ashutosh K, 2011. Plant Disease 95: 1582-1582
- 58. Samad A, Panda S, Gupta Mahesh K, P. V Ajayakumar, Shukla Ashutosh K, 2011. European Journal of Plant Pathology, 130: 1-4, 2011. 130:1-4
- 59. Samad A , P. V. Ajayakumar, Panda S, Gupta Mahesh K, Somkuwar B.G, 2011. Archives of Phytopathology and Plant Protection 44:1447-1455.
- 60. Shanker Karuna, Singh Manju, Srivastava Vandana, Verma Ram Kishore, Gupta Anil Kumar, Gupta Madan Mohan, 2011. Acta Chromatographica 23: 321-337

- 61. Singh Rashmi, Meena Abha, Negi Arvind Singh, Shanker Karuna, 2011. JPC Journal of Planar Chromatography Modern TLC 25:10-18
- 62. Singh Sailendra, Singh Rashmi, Banerjee Suchitra, Negi Arvind Singh, Shanker Karuna, 2011. Food Chemistry 131: 375-379
- 63. Singh Munnu, 2011. Journal of Spices and Aromatic Crops. 20: 30-33
- 64. Singh Rakshpal, R Divya, Awasthi Ashutosh, 2012. World Journal of Microbiology and Biotechnology 28: 323-333
- 65. Singh Rakshapal, Gangwar Surender P, Singh Deepmala, Singh Rachana, Pandey Rakesh, Kalra Alok, 2011. Medicinal Plants-International Journal of Phytomedicines and Related Industries 3: 1-7.
- 66. Singh, S.C. and Bagchi, G.D. 2011. *Moringa oleifera* Lamk. A Potential Medicinal Plants of Ayurveda, Jour. Med. Arom. Plant Sciences 33(1): 81-85.
- Singh, S.C. Bagchi, G.D. Saikia, D. Thakur, J.P. and Gupta, A.K.
 2011. Brazilian Pepper-Tree (*Schinus terebinthifolius*) A
 Potential MAP for India. Jour. Med. Arom. Plant Sciences 33 (2): 209-213.
- 68. Singh, S.C. 2011. Phytoresources of Lucknow District used in Diabetes. Jour. Med. Arom. Plant Sciences 33 (3): 362-270.
- 69. Jain, S.P. Srivastava, Sarika Singh, J. and Singh, S.C. 2011. Traditional Phytotherapy of Balaghat District, M.P., India. Indian J. Traditional Knowledge 10 (2): 333-338.
- 70. Kumar V.S. and Singh, S.C. 2011. Turning Wastelands into Greenlands-Wasteland Improvement/Development in India (Editorial). Jour. Med. & Arom. Plant Sciences 33(1):1-2.
- 71. Kumar V.S. and Singh, S.C. 2011. Transgenic Plants The Present Scenario (Editorial). Jour. Med. & Arom. Plant Sciences 33(2): 213-214.

- Thul, S.T. Srivastava, A.K. Singh, S.C. and Shanker, K. 2011. Genetic and Chemical Diversity of High Mucilagninous Plants of Sida Complex by ISSR and Chemical Fingerprinting. Mol. Biotechnology. DIO 10.1007/s 12033-011-9380-z.
- 73. Gupta, Neharica Manika, N Singh, Suman Singh, S.C. Pragadheesh, V.S. Yadav, Anju and Chanotia, C.S. 2011. Invesitgaiton on Phenylpropanoids Rich *Melaleuca decora* (Salisb.) Britt. Essential Oil. Natural Product Research (iFirst) pp. 1-3.
- 74. Sisodia Brijesh S, Negi Arvind S, Darokar Mahendra P, Dwivedi Upendra N, Khanuja Suman P S, 2012. Chemical Biology Drug Design 79: 610-615
- 75. Sonaimathu V, Parihar Swati, Thakur J P, Luqman Suaib, Saikia Dharmendra, Chanotiya C S, Johnpaul M, Negi Arvind Singh, 2012. Microbiology Research 2: 63-65
- 77. Srivastava N K, Srivastava A K, 2011. African Journal of Plant Sciences 5: 218-221
- 78. Srivastava N K, Srivastava A K, 2011. Journal of Medicinal Plant Research 5: 4747-4753
- 79. Srivastava Vikas, Negi Arvind Singh, Ajayakumar P. V., Khan Shamshad A., Banerjee Suchitra, 2012. Applied Biochemistry and Biotechnology 166:1401-1408
- 81. Thul Sanjog T., Khan Feroz, Khanuja Suman P. S. 2011. Plant OMICS Journal 4:120-125
- 82. Tiwari Neerja , Luqman Suaib, Masood Nusrat , Gupta Madan M. 2012. Journal of Pharmaceutical and Biomedical Analysis 61: 207-214
- 83. Tiwari Neerja, Yadav Deepti, Singh Subhash Chandra, Gupta Madan Mohan, 2011. Journal of Liquid Chromatography & Related Technologies 34: 1925-1937

- 84. Trivedi Priyanka, Singh Rashmi, 2011. Journal of Liquid Chromatography & Related Technologies 34: 2085-2102
- 85. Upadhyay Harish Chandra, Dwivedi Gaurav Raj, Darokar M P, Chaturvedi Vinita, Srivastava Santosh Kumar, 2012. Planta Medica 78: 79-81
- 86. Verma R K, Gupta Shikha, Gupta M M, Srivastava Santosh Kumar, 2012. Journal of Liquid Chromatography and Related technology 35: 937-950
- 87. Verma Priyanka, Mathur Ajay Kumar, Srivastava Alka, 2012. Protoplasma (2012) 249: 255-268
- 88. Verma Ram S, Padalia Rajendra C, Chauhan Amit, 2012. Archives of Biological Sciences 63: 1111-1115
- 89. Verma Ram S, Rahman Laiqur, Mishra Sunita, Verma Rajesh K, Chauhan Amit, Singh Anand, 2012. Maejo International Journal of Science and Technology 5: 181-190
- 90. Verma Ram S, Padalia Rajendra C, Chauhan Amit , Chanotiya Chandan S, Yadav Anju, 2012. Current Bioactive Compounds 7: 281-286
- 91. Verma Ram S, Pandey Vandana, Padalia Rajendra C, Saikia Dharmendra, Krishna Binay, 2012. Journal of Herbs, Spices & Medicinal Plants 17: 258-267.
- 92. Verma Ram S, Chauhan Amit, Rahman Laiq ur, Verma Rajesh K, Singh Anand, 2012. Medicinal and Aromatic Plant Science and Biotechnology 5: 139-142
- 93. Verma Ram S, Padalia Rajendra C, Arya Vinod , Chauhan Amit, 2012. Industrial Crops and Products 36: 343-349
- 94. Verma Ram S, Padalia Rajendra C, Chauhan Amit, 2012. Journal of the Science of Food and Agriculture 92: 626-631
- 95. Verma Ram S, Verma Rajesh K, Padalia Rajendra C, Padalia Rajendra C, Chauhan Amit, Singh Anand, Singh Hemendra P.,

- 2012. Chemistry & Biodiversity 8: 1921-1929
- 96. Verma Ram S, Verma Rajesh K, Chauhan Amit , Yadav Ajai K., 2012. Indian Journal of Pharmaceutical Sciences 73:233-235
- 97. Verma Ram S, Padalia Rajendra C, Chauhan Amit, Singh Anand, Yadav Ajai K., 2012. Natural Product Research 25:1577-1584
- 98. Verma Ram S, Padalia Rajendra C, Chanotiya Chandan S, Chauhan Amit, Yadav Anju, 2012. Journal of the Serbian Chemical Society 76: 523-528
- 99. Verma Rajesh Kumar, Chauhan Amit, Verma Ram Swaroop, Gupta Anil Kumar, 2011. 34:860-860
- 100. Verma R.K , Rahman L , Verma R.S , Kalra A., Kukreja A. K , Singh

- A, Chauhan A, Khanuja S.P.S., 2011, 6:553-559
- 101. Yadav Akhilesh Kumar, Singh Subhash Chandra, Gupta Madan Mohan, 2012. Journal of Liquid Chromatography & Related Technologies 35:1038-1052
- 102. Yadav Dharmendra K., Meena Abha, Srivastava Ankit, Chanda Debabrata, Khan Feroz, Chattopadhyay Sunil K., 2011. Drug Design, Development & Therapy 4:173-186
- 103. Yadav Dharmendra Kumar, Khan Feroz , Negi Arvind Singh, 2012. Journal of Molecular Modeling 18: 1-2525
- 104. Zaim Mohammad , Kumar Yogesh , Hallan V, Zaidi A. A. 2011. Genes 43: 138-146

Patents granted

SN	Title	Inventors	Country	Patent Number	Grant Date
1	A novel method for one pot conversion of artemisinin into arteether The present invention provides a method for the preparation of arteether from artemisinin in one pot in just about 4 hours comprising reduction of artemisinin into dihydroartemisinin by less quantity of sodium borohydride in ethanol at room temperature in the presence of a novel polyhydroxy catalyst.	Tarun Singh	Canada	2507078	12.4.2011
2	Composition and process for preparing herbal disinfectants and their use. The invention relates to development of the disinfectants that are nontoxic, biosafe and in addition give pleasant odour. The disinfectants already available in the market contain harmful chemicals such as formaldehyde, ethane dialdehyde, n-propanol, benzalkonium chloride, phenol and the like. The present invention relates to disinfectant compositions for cleaning the skin of humans and for cleaning surfaces such as floors. The compositions are homogeneous, clear and also useful as disinfectant. The invention also provides as process for the preparation of the cleaning composition. The compositions are prepared by mixing the components in a particular well-defined order to obtain clear, transparent solutions effective against pathogenic bacteria and fungi.	MP Darokar TRS Kumar AK Shasany KK Agarwal Atique Ahmed P. Chaturvedi V K Gupta Alok Krishna AK Singh JR Bahl RP Bansal	Canada	2480330	3.5.2011
3	Formulation useful as a nitrification and urease inhibitor and a method of producing the same The invention relates to a novel formulation useful as nitrification and urease inhibitor, said formulation comprising an effective amount of nitrogenous fertilizer, castor oil and oil derived from <i>Artemisia annua</i> in an amount sufficient to enhance the nitrification activity of the formulation, a method for producing the formulation and method for applying the same to soil.	Usha Kiram M Anwar S Chand	AR	029470	21.7.2011

4		Neerja Pant MM Gupta RS Bhakuni	Japan	4815041	2.9.2011
5	A synergistic formulation leading to enhancement of bio-activity of antifungal agents. The present invention relates to a method of treatment of fungal infections consisting essentially of a synergistic combination of plant compounds that are useful for enhancing the activity of antifungal compounds. The plant compounds, menthol and menthyl acetate, when mixed at specific concentrations, enhance the antifungal activity of the commercially available fungicides. This phenomena of the enhancement of the antifungal activity by the essential oil components at a very low concentration and specific ratios can revolutionize antifungal consumption and reduce the drug price in the market. Toxicity of the antifungal drugs is also reduced to the accepted levels of dosage alongwith enlargement of antimicrobial spectrum of the drug and prevention of drug resistance.	P Chatruvedi KK Agarwal Atique Ahmad TRS Kumar MP Darokar AK Shasany JS Arya	Canada	2479381	1.11.2011
6	Use of phyllocladane diterpenoids for plant growth promotion and	GD Bagchi Sarita Singh PD Dwivedi AK Gupta	Canada	2510132	15.11.2011

7	A novel plant growth promoting naphthophenone derivative from Gallic Acid. Plant growth regulatory activity of a gallic acid derivative, a new synthetic molecule methanone-{3',4',5'-trimethoxy) phenyl, 1-naphthyl, 2-O-4"-ethyl but-2"-enoate has been established. The invention also provides a novel and economical process for preparation of said molecule from a naturally occurring compound and testing it for growth regulating activity using Bacopa test system developed at CIMAP (Khanuja et al., 2001). The molecule is light yellow oil having molecular formula C ₂₆ H ₂₆ O ₇ .	MP Darokar SPS Khanuja SK Chattopadhyay Ankur Garg T Padmapriya Sachin Srivastava AK Shasany	India	250039	30.11.2011
8	The invention relates to novel loganin analogues and a process for the preparation thereof, particularly use of iridoid glycoside loganin isolated from the fruit pulp of <i>Strychnos nux-yomica</i> and its bioactive	Ankur Garg Merajuddin Khan	India	251579	26.3.2012

Chairperson

Prof. Asis Datta

Professor of Eminence National Institute of Plant Genetic Resources (NIPGR), New Delhi

External Members

Dr. Vivek Bhandari

Director
Institute of Rural Management, Anand

Dr. C.C. Lakshmanan

Chief Scientist & R&D Head Research & Technology Innovation ITC R&D Centre, Bengaluru

Prof. Sudip Chattopadhyay

Department of Biotechnology National Institute of Technology Durgapur

Mr. K. Rahul Raju

Joint Managing Director Nagarjuna Fertilizers & Chemicals Ltd. Hyderabad

Prof. A. Srikrishna

Professor Organic Chemistry Division Indian Institute of Science, Bengaluru

Agency Representative

Dr. (Mrs.) Vinita Sharma

Adviser & Head Science for Equity, Empowerment & Development (SEED) Division Department of Science & Technology New Dehli

DG's Nominee

Dr. Ramesh V. Sonti

Scientist CSIR-Centre for Cellular and Molecular Biology Hyderabad

Sister Laboratory

Dr. Ram A Vishwakarma

Director CSIR-Indian Institute of Integrative Medicine Iammu

Cluster Director

Dr. PS Ahuja

Director CSIR-Institute of Himalayan Bioresource Technology Palampur

Director

Prof. Ram Rajasekharan

Director CSIR-CIMAP Lucknow

Permanent Invitee

Head Planning & Performance Division CSIR, New Delhi

Member - Secretary

Rakesh Tiwari

Scientist CSIR-CIMAP Lucknow

Management Council

Chairperson

Prof. Ram Rajasekharan

Director

CSIR-CIMAP, Lucknow

Members

Dr Tushar K Chakraborty

Director

CSIR-Central Drug Rearch Institute, Lucknow

Dr KP Sastry, Scientist

CSIR-CIMAP Research Centre, Hyderabad

Mr. Rakesh Tiwari, Scientist

CSIR-CIMAP, Lucknow

Dr AS Negi, Scientist CSIR-CIMAP, Lucknow

Dr RP Bansal, Scientist CSIR-CIMAP, Lucknow

Dr V Sundaresan, Scientist CSIR-CIMAP, Lucknow

Dr SK Srivastava, Library Officer CSIR-CIMAP, Lucknow

Mr. US Rawat

Controller of Finance & Accounts CSIR-CIMAP, Lucknow

Mr. Dhirendra Kumar

Controller of Administration (Member Secretary) CSIR-CIMAP, Lucknow

Budget At A Glance

	Rupees in Lakhs
Pay & Allowances	2008.318
Contingencies (P-04)	215.244
H.R.D. (P-05)	2.000
Lab Maintenance (P-06)	157.370
Staff QRS, Maintenance (P-701)	19.874
Chemicals/Consumables & Other Research Expenditures (P-07)	405.380
Works & Services (P-50)	109.233
Apparatus & Equipments - Scientific (P-50)	416.000
Office Equipments (P-50)	2.996
Furniture & Fittings (P-50)	3.631
Library Books (P-50)	2.959
Library Journals (P-50)	96.761
Staff Qtrs. (Construction) (P-702)	17.500
CSIR Network Projects	441.387
Total	4340.04
Pension (P804)	655.470
EMR (P81)	160.741
External Budgetary Resource	
Lab Reserve Fund (LRF)	71.89
External Cash Flow (ECF)	262.30

Staff Members (As on 31.3.2012)

Director

Prof. Ram Rajasekharan

Chief Scientist

Dr UC Lavania

Dr A K Singh

Dr BRR Rao

Dr RN Kulkarni

Dr DD Patra

Dr LN Mishra

Dr Mansoor Alam

Dr AK Singh

Dr SK Chattopadhyay

Dr MM Gupta

Dr D Singh

Dr Ashok Sharma

Dr KP Sastry

Senior Principal Scientist

Shri Anil Kumar

Dr KV Shyamsunder

Dr AK Kukreja

Dr AK Mathur

Dr AK Singh

Dr GD Bagchi

Dr NK Srivastava

Dr RS Sangwan

Dr SK Srivastava

Dr OP Dhawan

Dr Alok Kalra

Dr RK Lal

Dr HO Mishra

Dr AK Tripathi

Dr HN Singh

Dr Muni Ram

Dr Amitabh Chattopadhyay

Dr Mohd Yaseen

Dr (Mrs) Suchitra Banerjee

Dr Harmesh Singh Chauhan

Dr Munnu Singh Dr Abdul Samad

Mr. Rakesh Tiwari

Mr. PV Ajay Kumar Dr VKS Tomar

Dr Kambod Singh

Dr JR Bahl

Mr. JP Tiwari

Dr (Mrs) Archana Mathur

Dr PK Chaudhary

Dr (Mrs) Neelam Singh Sangwan

Dr AK Shasany Dr Saudan Singh

Dr Alok Krishna

Principal Scientist

Dr Ved Ram Singh Dr RS Bhakuni

Mr. Sudeep Tandon

Mr. MP Darokar

Dr AS Negi

Dr Birendra Kumar

Dr AK Gupta

Dr (Ms.) Malathi Sriniyasan

Mr. Dharmendra Saikia

Dr Laig-ur-Rahman

Senior Scientist

Dr Vikrant Gupta

Dr Rakesh Pandey Dr RP Bansal

Dr Anirban Pal

Dr J Kotesh Kumar

Dr (Mrs) Sunita Singh Dhawan

Mr R. Ramesh Kumar

Dr Dayanandan Mani

Scientist

Dr Rajesh Kumar Verma

Dr Karuna Shanker

Dr Sanjay Kumar

Mr. Manoj Semwal

Dr DU Bawankule

Dr Feroz Khan

Dr Narayan Prasad Yadav

Dr Suaib Lugman

Dr (Mrs) Deeptanjali Sahoo

Dr V Sundaresan

Mr. Ram Swaroop Verma

Dr Ashutosh Kumar Shukla

Mr. KVN Satya Srinivas

Dr RC Padalia

Dr PK Rout

Dr CS Chanotiva

Dr Debabrata Chanda

Dr (Ms) Puia Khare

Dr Rakesh K. Shukla

Dr (Ms.) Tripta Jhang

Junior Scientist

Ms. Abha Meena

Dr Atul Gupta

Dr Ram Suresh

Mr. D Nannaware

Dr. Sreedhar R. V.

Group-III

Principal Technical Officer

Dr SK Srivastava

Dr NS Ravindra

Dr VK Agarwal

Dr HP Singh

Mr. S. Tahir Husain

Sr. Technical Officer (3)

63

Dr Man Singh

Mr. Sushil Kumar

Dr Mohd Zaim

Mr. Kundan Singh

Dr SC Singh

Dr Dinesh Kumar Mr. Jamil Ahmad Mr. Vikram Singh Dr. AK Srivastava Dr RK Verma

Sr. Technical Officer
Mr. Krishna Gopal
Mr. AM Khan
Mr. Prem Singh
Dr DK Rajput
Dr Sukhmal Chand

Sr. Technical Officer (1)
Mr. Anand Singh
Mr. K Bhaskaran
Dr Ateeque Ahmad

Dr Ateeque Ahmac Mr. Mehdi Mirza Mr. Govind Ram

Dr Dasha Ram

Technical Officer Ms. Anju Kumari Yadav Mr. Shiv Prakash

Technical AssistantMr. Anil Kumar Singh

Technical Assistant Ms. Manju Prajapati Mr. Ram Pravesh Mr. Rajendra Patel Mr. Rakshpal Singh Dr Amit Chauhan Mr. Anil Kumar Maurya Mr. Amit Mohan

Mr. Amit Mohan Ms. Namita Gupta Mr. Sanjay Singh Mr. A Niranjan Kumar Ms. Anju Gupta

Mr. Balakishan Bhukya
Sr. Technical (2)

Sr. Technical (2)
Mr. VP Rakhwal
Mr. OP Pandey
Mr. S Selveraj
Mr. SK Sharma
Mr. Phool Chand
Mr. MR Khan
Mr. AK Srivastava
Mr. RD Ram

Mr. Raja Ram Mr. JP Singh Mr. Israr Ali

Mr. Pawan Prasad Mr. Shyam Behari Mr. AR Kidwai Mr. SAL Zaidi

Mr. SAI Zaidi Ms. IV Rautela Mr. FA Siddiqui Mr. SS Subramani Mr. Ram Chandra Mr. Durga Prasad Mr. Y Shiv Rao Mr. Salim Baig Dr Abdul Khaliq Mr. SK Pandey Mr. Raghubind Kumar Mr. Gopal Ram

Sr. Technician (1)
Ms. S Sharda
Mr. PN Gautam
Mr. Joseph M Massey

Mr. Ram Lakhan Mr. Vijay Kumar Mr. PK Tiwari Mr. Vinod Kumar Mr. E Bhaskar Mr. Siva Kumar Ms. Rai Kumari

Technician (2) Mr. DPS Meena Mr. VK Shukla

Technician (1)

Mr. Pankaj Shukla Mr. Kundan Narayan Wasnik Mr. Yalla VVS Swamy Mr. Basant Kumar Dubey Mr. Vijay Kumar Verma Mr. Harendra Nath Pathak Mr. Hemraj Sharma

Mr. Jittendra Kumar Verma Mr. Pramod Kumar

Mr. Kishor Kumar Barik Mr. Ved Prakash Saini Lab Assistant (Gr. I (4))

Mr. RC Verma Mr. Om Prakash Mr. Mahesh Prasad Mr. VK Singh

Mr. Dhani Ram Mr. Om Prakash Mr. Abdul Mabood Mr. Mohd Amin Khan

Mr. Ram Ujagir Mr. Subhash Kumar Mr. Bharat Singh Bisht Mr. Man Mohan Mr. Qasim Ali

Mr. Sabhajit Mr. Mohd Navi Mr. Munawar Ali Mr. Hari Pal Mr. Rajanna

Lab Attendant (2)

Ms. Pushpa Semwal Mr. Surendra Nath Ms. Samundra Devi Mr. Nurul Huda Mr. Lal Chand Prasad

Lab Attandant (1) Mr. G Appa Rao Mr. Manish Arya

Administrative Staff (Group-A)

Mr. Dhirendra Kumar

65

Mr. Baby Yohannan

Mr. US Rawat

Mr. Ravindra Kumar

Group-B

Mr. SM Kushwaha

Mr. Sanjay Kumar

Mr. Hare Ram

Mr. Ankeshwar Mishra

Mr. Neelambuj Shankar Prasad

Mr. Vikash Chand Mishra

Mr. AK Sharma

Mr. AK Chauhan

Group-B (Non Gazetted)

Mr. Anil Kumar

Mr. US Mishra

Mr. Shiyakant

Mr. S Manjunatha

Mr. Sufia Kirmani

Mr. Muneshwar Prasad

Mr. Sant Lal

Mr. Parvez Nasir

Asstt (F & A) Grade I

Mr. CS Kandpal

Mr. OP Singh

Ms. Nisha Sharma

Mr. Harish Chandra

Mr. Shiv Kumar

Mr. Suneel Kumar

Asstt (S & P) Grade I

Mr. Pankai Kumar

Mr. Shamiullah Khan

Mr. K. Viswanatha Rao

Mr. SK Srivastava

Senior Stenographer

Mr. Bhikhu Lal

Ms. Kanchan Lata Thomas

Ms. Gaitry Sharda

Ms. P Sabitha

Mr. SJ Sinha

Asstt Gen Grade-II

Mr. P Srinivas

Mr. Rajesh Kumar

Mr. KP Dubey

Mr. KG Thomas

Mr. AL Sahu

Mr. Ravi Prakash

Mr. PK Chaturvedi

Mr. SB Shah

Asstt F & A Grade-II

Mr. Kanhaiya Lal

Mr. KS Ali

Ms. KC Nagarathnamma

Asstt S & P Grade-II

Mr. SA Warsi

Asstt Gen. Grade-III

Mr. Manoj Swaroop Shukla

Ms. Sheela Yadav

Mr. Vijay Kumar Bhartey

Ms. Preeti Gangwar

Asst F & A Grade-III

Mr. Pradeep Kumar

Ms. Farzana Hafeez

Asstt S &P Grade-III

Mr. Aieet Verma

Junior Stenographer

Mr. Kaushal Kishore

Mr. Siddharth Shukla

Group C (Non-Tech)

Mr. AK Srivastava

Mr. CS Pant

Isolated Posts

Mr. Yograj Singh

Mr. Rohit Khanna

Ms. Sangeeta Tanwar

Drivers PB-1

Mr. Ajay Kumar Verma

Mr. Sanjay Kr. Singh

Mr. Sarwesh Yadav

Mr. Chandrapal Verma

Mr. Rajesh Kumar

Canteen Staff

Mr. Y Thankappan

Mr. Mohd Shamim

Mr. Victor Mukerjee

Group-D (NT)

Mr. Mata Prasad

Mr. Sadanand

Mr. Kailash Chandra

Mr. R Algarswamy

Mr. Tula Singh

Mr. Ashok Kr. Pathak Mr. Mohd Aslam Khan

Mr. Kishan Lal

Mr. P Bhiskapathi

Mr. Ajay Kumar

Mr. RK Gupta

Ms. Nirmala Verma

Ms. Tara Devi

Ms. Nagis Sufia Ansari

Ms. Sunita Devi

Mr. Santosh Kumar

Mr. Sant Ram

PB-1

Mr. Harihar

Mr. TP Suresh

Mr. Raja Ram

Mr. Praveen Kumar

Mr. Ram Baksh Singh

Ms. Ram Kali

Mr. Kishan Ram

Mr. Zarina Bano

Mr. Ram Karan

Mr. Dharam Pal Balmiki

Mr. Abdul Nadir Khan Mr. Arvind Kumar

VII. / (I VIII G IX)

Ms. Raj Mati

Mr. Harpal Valmiki

©CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow

Published by: Director, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow

Concept*: Prof. Ram Rajasekharan **Editing**: Rakesh Tiwari, HP Singh

^{*}of graphical presentations/abstracts of research work in Annual Report

